NOT MEASUREMENT

NOTE: The cover page of this standard has been SENSITIVE
changed for administrative reasons. There are no
other changes to this document. MIL-STD-2045-44500

18 June 1993

DEPARTMENT OF DEFENSE
INTERFACE STANDARD

TACTICAL COMMUNICATIONS PROTOCOL 2
(TACO2)
FOR THE

NATIONAL IMAGERY TRANSMISSION FORMAT STANDARD

s (S
TATE s OF

AMSC N/A AREA DCPS

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

MIL-STD-2045-44500
FOREWORD

1. The National Imagery Transmission Format Standards (NITFS) is the standard for formatting digital
imagery and imagery-related products and exchanging them among members of the Intelligence Community
(IC) as defined by Executive Order 12333, the Department of Defense (DOD), and other departments and
agencies of the United States Government as governed by Memoranda of Agreement (MOA) with those
departments and agencies.

2. The National Imagery Transmission Format Standards Technical Board (NTB) developed this standard
based upon currently available technical information.

3. The DOD and members of the Intelligence Community are committed to interoperability of systems used
for formatting, transmitting, receiving, and processing imagery and imagery-related information. This standard
describes the TActical COmmunication protocol 2 (TACO2) requirements and establishes its application within
the NITFS.

4. As a result of a Defense Information Systems Agency (DISA) action, standards for all military data
communication protocols will be published in a MIL-STD-2045 series of documents. A MIL-STD-2045
document series has been established within the Data Communications Protocol Standards (DCPS)
standardization area.

a. MIL-STD-2045-10000 series. MIL-STD-2045-10000 to MIL-STD-2045-19999 inclusive, will be
used to describe DOD's implementation of commercial, international, national, federal, and military standards
within the functional profile concept, in order to provide required network services. U.S. Government Open
Systems Interconnection Profile (GOSIP) will be the basis for developing the 10000 series with DOD
enhancements and unique military standards.

b. MIL-STD-2045-20000 series. MIL-STD-2045-20000 to MIL-STD-2045-29999 inclusive, will be
used to describe DOD enhancements and extensions to existing commercial, international, national, or federal
standards.

c. MIL-STD-2045-30000 series. MIL-STD-2045-30000 to MIL-STD-2045-39999 inclusive, will be
used to describe DOD unique protocols and services that are not supported by commercial, international,
national, or federal standards.

d. MIL-STD-2045-40000 series. MIL-STD-2045-40000 to MIL-STD-2045-49999 inclusive, will be
used to document interim standards. Interim standards are documents DOD needs until these standards are
described in either GOSIP or MIL-STD-2045-20000 or 30000 series standards.

5. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use
in improving this document should be addressed to Defense Information Systems Agency (DISA), Joint
Interoperability and Engineering Organization (JIEO), Center for Standards (CFS), Attn: TBBD, Fort
Monmouth, NJ 07703-5613 by using the Standardization Document Improvement Proposal (DD Form 1426)
appearing at the end of this document or by letter.

18 June 1993 i

MIL-STD-2045-44500

CONTENTS
PARAGRAPH PAGE
1. SCOPE . . e e 1
1.1 SO o i it e e e e 1
1.2 CONteNt . . . e e 1
1.3 Applicability e 1
1.4 Protocol tailoring i e e 1
1.5 FECtailoring e e e e 1
2. APPLICABLE DOCUMENTS . . . e e e e e e e e e 3
2.1 Government doCUMENtS ot e e 3
2.1.1 Specifications, standards, and handbooks 3
2.1.2 Other Government documents, drawings, and publications 3
2.2 Non-Government publications 4
2.3 Order of precedence i e 5
3. DEFINITIONS . . e e e e e e e e e e 7
3.1 Acronyms used inthisstandard 7
3.2 Definitions used in this standard 9
4. GENERAL REQUIREMENTS e e e e e e et e e e 13
4.1 OVBIVIBW . o e e et e e e e e e e 13
4.1.1 APProach e 13
4.1.2 NITFS reliable transfer server for TACO2 (TACO2 NRTS) 14
4.1.3 NETBLT . .ot e e e e e e 14
4.1.4 P 15
4.1.5 Header Abbreviation sublayer 15
4.1.6 FEC 15
4.1.6.1 Use of FEC and BERT in TACO2 transmissions 15
4.1.6.2 Placement of FEC within network protocol stack 15
4.1.6.3 Placement of FEC within data link layer 15
4.1.7 HDLC and SLIP e e 17
4.1.8 Physical layer e e 17
4.2 NOTALION . . ot o e 17
4.2.1 Hexadecimal representation 17
4.2.2 Data transmission OFder ottt e e e e e e e 17
5. DETAILED REQUIREMENTS e e e e 19
5.1 NITFS reliable transfer server for TACO2 (TACO2NRTS) 19
5.1.1 Metamessage definition e 19
5.1.1.1 DesCription e 19
5.1.1.2 COMPONENES . . . e e e e e e e 20
5.1.1.2.1 N BrSION . . e e 21

PARAGRAPH

5.1.1.2.2
5.1.1.2.3
5.1.1.2.4
5.1.1.2.5
5.1.1.2.6
5.1.1.2.7
5.1.1.2.8
5.1.1.2.9
5.1.1.2.10
5.1.1.2.11
5.1.1.2.12
5.1.1.2.13
5.1.2
5.1.2.1
5.1.2.2
5.1.2.2.1
5.1.2.2.1.1
5.1.2.2.1.2
5.1.2.2.2
5.1.2.2.2.1
5.1.2.2.2.2
5.1.2.2.2.3
5.1.2.3
5.1.2.3.1
5.1.2.3.1.1
5.1.2.3.1.2
5.1.2.3.1.3
5.1.2.3.2
5.1.2.3.2.1
5.1.2.3.2.2
5.1.2.3.2.3
5.1.2.4
5.1.2.4.1
5.1.2.4.1.1
5.1.2.4.1.2
5.1.2.4.2
5.1.2.4.2.1
5.1.2.4.2.2
5.2

5.2.1
5.2.1.1

18 June 1993

MIL-STD-2045-44500

CONTENTS
PAGE
MESSAgE NAIME o s it e e e e e e e 21
File name e 21
MESSagE tYPe . . o o e e e 21
Message length e 21
Start POINt . . . e 21
SENder NAME . . o .o e 21
Recipient name 21
Validity e e 21
Criticality e e e e 22
GeoloCation 22
Additional components e 22
Unrecognized COMPONENESttt it e e e e et e e e 22
TACO2 NRTS operationt e e e e e e e 22
Summary of operation e e 22
Connection establishment 22
Sending end SyStem e e 23
Connection_Request e 23
Connection_RespoNSe oottt e e 24
Receiving end system e e e 24
Listen ReqUESt e e 24
Connection_Request_Received 24
Connection_Request ReSPONSE . . . o v it it e e e e e 24
Data transfer e 25
Sending end SysStem e e 25
Send_Buffer_Setup 25
Send_Buffer Response e e 25
Send Flush Buffer e e 26
Receiving end system e e 26
Receive Buffer_Setup i e 26
Receive Buffer ReSpONSettt e e e e 26
Receive Flush Buffer i 26
Connection termination e 26
NETBLT-invoked termination 27
ClOSE . vt e e 27
Exception_Report e 27
TACO2 NRTS-invoked terminationt 27
QUIt-TEgUEST . . . o o e 27
ADOrt-reqUESt . . . e e e 27
Transport layer - NETBLT e 27
NETBLT full-duplex operations, 27
Single-buffer operation 27
1\

PARAGRAPH

5.2.1.2
5.2.2
5.2.2.1
5.2.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.3.5
5.2.4

5.2.5
5.2.5.1
5.2.5.1.2
5.2.5.1.3
5.2.5.1.4
5.2.5.1.5
5.2.5.1.6
5.2.5.2
5.2.5.2.1
5.2.5.2.2
5.2.5.2.3
5.2.5.2.3.1
5.2.5.2.3.2
5.2.5.2.3.3
5.2.5.2.3.4
5.2.5.2.4
5.2.5.2.4.1
5.2.5.2.4.2
5.2.5.2.4.3
5.2.5.25
5.2.5.2.6
5.2.5.3
5.2.5.3.1
5.2.5.3.1.1
5.2.5.3.1.2
5.2.5.3.2
5.2.5.3.3
5.2.5.3.4
5.2.6

5.2.7

MIL-STD-2045-44500

CONTENTS
PAGE
Multiple-buffer operation 28
Buffersand packets e e 28
BUFfEIS . . e e e e 28
PaCKelS . . . e 28
Flow control 28
Client level flow control 28
Internal flow control 28
Flow control parameter negotiation, 28
Flow control parameter renegotiation 29
Client-controlled flow 29
Checksummingt e e e e e 29
NETBLT protocol operationttt it e i e 29
CoNNeCtioN SEtUP v it e 30
Death timeouto e 31
Port nUMbEr e 31
Client String o e e e 31
OPEN timer e 31
Connection ID . . . o oo e 31
Data transfer e 31
Single buffer transfer e 31
Multiple buffer transfer 32
Recovering from lost control messagest i 32
Control packet 32
Control timer o e 32
Control message sequence NUMber 33
Response to CoNtrol MeSSages . . . v v v it it e e e 33
Recovering from lost DATA and LDATA packets 33
Send buffer state SeqUENCE i e e 33
Receive buffer state sequence 34
Alternative method for data timer estimation 35
Death timers e 36
Keepalive packetsot e e e e 36
Terminating the connectiont i 36
Successful transfer 36
Receiver successful close 36
Sender successful close 37
Client QUIT .. .o e e e s e e e e e e e e e 38
NETBLT ABORT .. . e e e e e e e e 38
Death timer timeout e 39
Protocol layering structure e 39
Packet formats 39

PARAGRAPH

5.2.7.1
5.2.7.2
5.2.7.3
5.2.7.4
5.2.7.5
5.2.7.6
5.2.7.6.1
5.2.7.6.2
5.2.7.6.3
5.2.8
5.2.8.1
5.2.8.1.1
5.2.8.1.2
5.2.8.1.2.1
5.2.8.2
5.2.8.3
5.2.9
5.2.9.1
5.2.9.1.1
5.2.9.1.2
5.2.9.1.3
5.2.9.2
5.2.9.2.1
5.2.9.2.2
5.2.9.2.3
5.2.9.2.4
5.2.9.2.5
5.2.9.2.6
5.2.9.2.7
5.2.9.2.8
5.2.9.3
5.2.9.3.1
5.2.9.4
5.2.9.4.1
5.2.9.5
5.2.9.5.1
5.2.9.6
5.2.9.6.1
5.2.9.6.2
5.2.9.7
5.2.9.8

18 June 1993

MIL-STD-2045-44500

CONTENTS
PAGE
OPEN (type 0) and RESPONSE (type 1)ottt i 40
QUITACK (type 3), and DONE (type 10)ttt i e e e 41
QUIT (type 2), ABORT (type 4), and REFUSED (type 9) 41
DATA (type 5) and LDATA (type 6) o it i ittt e e e e e e 42
NULL-ACK (fyPE 7) .+ o v e et e e e e e e e e e e e e e e e e e 43
CONTROL (type 8) . v vt e e e e e e e e e e e e e e e 43
GO message (tYpe 0) . . . oot i e e 44
OKmessage (type 1) . . . ottt e e e e e 44
RESEND message (type 2) o ot it e e e e e e e e 45
Required NETBLT componentsttt ittt e 45
SIMpleX . 45
Sender simplex operation e e 45
Receiver simplex operation 46
Packet error handling e 46
Half-duplex e 46
Full-duplex e e e e 46
Specific values for NETBLT e e 46
Fieldscommontoall packets 47
N BrSION . o e e 47
Local portand foreign port 47
Longword alignment padding 47
OPEN and RESPONSE packets 47
Connection UID e 47
BUffer Size e 47
DATA packet Size e e 47
Burst size and burstinterval 47
DireCtion e 47
CheckSumMmMINGo e e e 47
Maximum number of outstanding buffers 47
Client String o e e 48
QUIT packets 48
Reason for QUIT/ABORT/REFUSE i 48
ABORT pacKets o e e 48
Reason for QUIT/ABORT/REFUSE e 48
REFUSED packetso e e e e e e e e 49
Reason for QUIT/ABORT/REFUSE i 49
DATA and LDATA packets e 49
Packet NUMDbEr e 49
Data area checksum value 49
TIMer PreCiSiON o e e e e e 49
Opentimervalue e 49
Vi

PARAGRAPH

5.2.9.9
5.2.9.10
5.3

5.3.1
5.3.1.1
5.3.2
5.3.2.1
5.3.2.2
5.3.3

5.3.4
5.34.1
5.3.4.2
5.3.4.3
5.3.4.3.1
5.3.4.3.1.1
5.3.4.3.1.2
5.3.4.3.2
5.3.4.3.2.1
5.3.4.3.2.2
5.4

54.1
54.1.1
5.4.1.2
5.4.1.2.1
54.1.2.1.1
5.4.1.2.1.2
5.4.1.2.1.3
5.4.1.2.1.4
5.4.1.2.2
5.4.1.2.2.1
5.4.1.2.2.2
5.4.1.2.2.3
5.4.1.2.2.4
5.4.1.2.25
5.4.1.3
5.4.1.3.1
54.1.3.1.1
5.4.1.3.1.2
5.4.1.3.1.3
5.4.1.3.2
54.1.3.2.1

MIL-STD-2045-44500

CONTENTS
PAGE
Quittimervalue e e e e 49
Death timer value e 49
Network layer - IP e e e 49
OVBIVIBW . o e et e e e e e e 49
IPaugmentations e e e e 49
Required IP components e e 50
SIMplEX . e 50
Point-to-point duplex e 51
IP Message format for TACO2 i e e et e e 52
LM 53
OVBIVIBW . . o o 53
ICMP in TACOZ . . . e e e e e e e 54
ICMP message formatsttt e 54
Parameter problem messaget e 54
IPAields 55
ICMP fields e 55
Echoorechoreply message i 55
IPAields . .. e 55
ICMP fields e 56
Data link layer e e e 56
Header abbreviation sublayer 56
Abbreviated header format 57
Multiple-connection operation with abbreviated headers 58
Sender operation with abbreviated headers 58
Sender connection state table 58
Sender processing of outgoing OPEN packet 58
Sender processing of incoming RESPONSE packet 59
Sender processing of outgoing DATA/LDATA packet 59
Receiver operation with abbreviated headers 60
Receiver connection state table 60
Receiver processing of incoming OPEN packet 60
Receiver processing of outgoing RESPONSE packet 60
Receiver processing of incoming abbreviated header packet 61
Receiver processing of incoming DATA/LDATA packet 61
Single-connection operation with abbreviated headers 61
Single-connection sender operation with abbreviated headers 61
Sender processing of outgoing OPEN packet 61
Sender processing of incoming RESPONSE packet 62
Sender processing of outgoing DATA and LDATA packets 62
Single-connection receiver operation with abbreviated headers 62
Receiver processing of incoming OPEN packet 62

vii

PARAGRAPH

5.4.1.3.2.2
5.4.1.3.2.3
5.4.2
5.4.2.1
54.2.1.1
5.4.2.1.2
5.4.2.2
5.4.2.2.1
5.4.2.2.2
5.4.2.2.3
5.4.2.3
5.4.2.3.1
5.4.2.3.2
5.4.2.3.3
5.4.2.3.4
5.4.3
5.4.3.1
5.4.3.1.1
5.4.3.1.2
5.4.3.1.2.1
5.4.3.1.2.2
5.4.3.1.2.3
5.4.3.1.2.4
5.4.3.1.2.5
5.4.3.1.3
5.4.3.1.3.1
5.4.3.1.3.2
5.4.3.1.3.3
5.4.3.1.3.4
5.4.3.1.3.5
5.4.3.2
5.4.3.2.1
5.4.3.2.2
5.4.3.2.3
5.4.3.2.4
5.4.3.2.4.1
5.4.3.2.4.2
5.4.3.2.4.3
5.4.3.2.4.4
5.5

18 June 1993

MIL-STD-2045-44500

CONTENTS
PAGE
Receiver processing of outgoing RESPONSE packets 62
Receiver processing of incoming abbreviated-header packets 62
FEC sublayer e e e e e e 63
FEC-1codeo e 63
Correction capability 64
Long datagrams o e e 64
Required modes of FEC 65
Uncoded e 65
e 65
FEC-I . 65
Bit error ratio testing (BERT)o e e e 65
Biterrorratiotest facility 65
BERT frame format 65
Standard BERT test formato 67
Short BERT test format e 67
Framing sublayer e e 67
HDLC framingttt e e e e e e e e et e e 67
OVBIVIBW . o e e et e e e e e e 67
Required HDLC componentsttt e e e e e 67
Flag SeqQUENCE it e e e e 67
Address field e e e 67
Control field 67
Information field 68
Frame check sequence field 68
HDLC Proceduresottt it e e e e e e e e e e e e e e 68
Order of bit transmission e 68
TranSParenCy . . . o oo e e e e e e e e e e e e 68
Invalid frames o e 68
Frame abortion e 68
Inter-frame time fill 68
SLIP e e e 68
OVBIVIBW . o e e e e e e e e e 68
Protocol 69/70
Required SLIP componentsttt it 69/70
Specific values for SLIP 69/70
Order of bit transmission 69/70
TranSPareNCY . . v v i e e e e e e e 69/70
Invalid frames e 69/70
Inter-frame gap ot i e 69/70
DTE-DCE interfaces o ot i e e e e e e e e 69/70

viii

MIL-STD-2045-44500

CONTENTS
PARAGRAPH PAGE

6. NOTES ... e 71
6.1 Example TACO2 packett e e e e et e 71
6.2 TACO2 NETBLT compared to RFC998 NETBLT 72
6.3 SLIP driVers . . ot 73
6.4 Notes 0N FEC o e e 75
6.4.1 General notes ON FEC oo e 75
6.4.2 Discussion of FEC appliques 75
6.4.3 Discussion of FEC-land FEC-1I i 75
6.4.4 Interpretation of BERT results 76
6.4.5 Performance considerationst 76
6.4.6 Selection of FEC coding options 79
6.4.6.1 General disCUSSIONot e 79
6.4.6.2 Descriptions of Circuits e 79
6.4.6.2.1 16 kbps UHF SATCOM . ..o e e e e e et e 79
6.4.6.2.2 2.4kbps UHF SATCOM e e e e e e e 79
6.4.6.2.3 16 kbps UHF SATCOM with FEC applique 79
6.4.6.2.4 2.4 kbps UHF SATCOM with FEC applique 79
6.4.6.2.5 HE CIrCUITS . . o . o e e e e e e e e e 80
6.4.6.2.6 HF circuits with hardware FEC 80
6.4.6.2.7 TRI-TAC . 80
6.4.6.2.8 Telephone Circuit e 80
6.4.6.2.9 Telephone circuit with errorcontrol 80
6.4.6.2.10 DAMA e e 80
6.4.6.3 Recommended modest e 80
6.5 Effectivity summary e e 81
6.5.1 Effectivity 1 - FEC | and Bit Error Ratio Test (BERT) 81
6.5.2 Effectivity 2 - FEC Il e e 81
6.5.3 Effectivity 3 - Header abbreviation and client-controlled flow 81
6.5.4 Effectivity 4 - Pull vs. push 81
6.5.5 Effectivity 5- Multicast 82
6.5.6 Effectivity 6 - Medium Access Control layer 82
6.5.7 Effectivity 8 - Defense Information Systems Network (DISN) 82
6.7 Subject term (key word) listing 82
FIGURE

1. The TACO2 message transfer reference model 14
2. Possible positioning of the FEC within the data link layer 16
3. Transmission order of bytes e 17
4, Significance of bitS e e 18
5. TACO2 NRTS connection establishment 23

MIL-STD-2045-44500

CONTENTS
PARAGRAPH PAGE

6. TACO2 NRTS data transfer e e it 25
7. TACO2 NRTS connection terminationt 26
8. Example of checksumming. 29
9. Sender open state diagram L. e e 30
10. Receiver open state diagram 30
11. Sending buffer state diagram e e 34
12. Receiving buffer state diagram e 35
13. Receiver successful close state diagram 37
14. Sender successful close state diagram e 37
15. Quitstate diagram o e e e 38
16. Abort state diagram e e e e e e 38
17. Internet datagram header e e 52
18. Abbreviated header TACO2 packet i i e 57
19. FEC-Iformat o e 63
20. Encoding a 450 byte packet 64
21. BERT frame format e 66
22. Example TACO2 packet e 71
23. BER vs. relative throughput e e 78
TABLE

l. Metamessage COMPONENTS . . . o v i i e e e e e e e e e 20
1. Recommended NOES ot e e 80
APPENDIX

ADPENAIX A L o e e e e e e e 83
AppendixX B . . e 89
APPENAIX C Lo e e e e e e 99

18 June 1993 X

MIL-STD-2045-44500
1. SCOPE

1.1 Scope. This document establishes the requirements for the TActical COmmunications protocol 2
(TACO2), part of the National Imagery Transmission Format Standards (NITFS). National Imagery
Transmission Format (NITF) is a standard format for transmitting digital imagery and imagery-related products
among members of the Intelligence Community, and TACO?2 is a protocol suite that may be used for that
transmission. It includes requirements for Forward Error Correction (FEC), which is necessary to ensure
interoperability and to promote commonality among subsystems that comply with NITFS.

1.2 Content. This standard establishes the requirements to be met by systems complying with NITFS when
using the TACO?2 protocol, and defines the protocols and formats that make up TACO2. All aspects of TACO2
that affect functional interoperability are specified herein. In addition, guidance is provided for those aspects of
TACO?2 operation that are not strictly related to interoperability but may affect technical performance or
resistance to error.

1.3 Applicability. This standard is applicable to the Intelligence Community and the DOD. It is mandatory
for all Secondary Imagery Dissemination Systems (SIDS) in accordance with the memorandum by the Assistant
Secretary of Defense for Command, Control, Communications, and Intelligence ASD(C °I), Subject: National
Imagery Transmission Format Standards (NITFS), 12 August 1991. This directive shall be implemented in
accordance with JIEO Circular 9008, and MIL-HDBK-1300. New equipment and systems, those undergoing
major modification, or those capable of rehabilitation shall conform to this standard.

1.4 Protocol tailoring. TACO?2 is designed as a single protocol stack that provides for message transfer
over a wide variety of tactical communication circuits. It is particularly appropriate for use over circuits where
other protocol suites operate poorly or not at all, but also is designed to perform well over any communications
circuit. It can transfer any form of data, since it does not use any internal component of an NITFS message. It
can be configured to operate over circuits not anticipated at initial installation; therefore, a conforming TACO2
implementation must implement all capabilities specified herein, except as specifically noted. The possible
ranges of various parameters may be limited for specific applications; mandatory ranges are specified in this
document. Additional information on NITFS compliance is available in JIEO Circular 9008.

1.5 EEC tailoring. As a minimum, only those features or functions specified herein, necessary to ensure
interoperability among systems, shall be implemented in an equipment item. While every effort has been made
to include all the features necessary, certain aspects depend on system application and must be tailored by the
specification writer. These aspects include:

a. User choice of appropriate FEC selection.

b. Automatic switching of FEC code based on the conditions of the tactical line.

MIL-STD-2045-44500
c. Inhibiting external or internal FEC codes.

d. Using an external FEC code if it is desired.

18 June 1993 2

MIL-STD-2045-44500
2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 Specifications, standards, and handbooks. The following specifications, standards, and handbooks
form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these
documents are those listed in the issue of the Department of Defense Index of Specifications and Standards
(DODISS) and supplements thereto, cited in the solicitation.

STANDARDS
FEDERAL
FED-STD-1037B - Telecommunications: Glossary of
Telecommunication Terms, 3 June 1991.
MILITARY
MIL-STD - 1777Military Standard Internet Protocol, Defense
Communications Agency, August 1983.
MIL-STD-188-114A - Electrical Characteristics of Digital Interface
Circuits, 30 September 1985.
MIL-STD-2500 - National Imagery Transmission Format (NITF) for
the National Imagery Transmission Format
Standards (NITFS), 18 June 1993.
HANDBOOKS

MIL-HDBK-1300 - National Imagery Transmission Format Standards
(NITFS), 18 June 1993.

(Unless otherwise indicated, copies of federal and military specifications, standards, and handbooks are
available from the Standardization Documents Order Desk, 700 Robbins Avenue, Building #4, Section D,
Philadelphia, PA 19111-5094.)

2.1.2 Other Government documents, drawings, and publications. The following other Government
documents, drawings, and publications form a part of this document to the extent specified. Unless otherwise
specified, the issues are those cited in the solicitation.

MIL-STD-2045-44500

DISA/JIEO Circular 9008 NITFS Certification Test and Evaluation Plan,

(Effectivity 8).

DISA/JIEO SPEC 9137 NITFS TACO2 Protocol to KY-57/58
Cryptographic Device Technical Interface

Specification (TIS), (Effecitivity 8).

DISA/JIEO SPEC 9138 NITFS TACO2 Protocol to KG-84-A/C
Cryptographic Device Technical Interface

Specification (TIS), (Effectivity 8).

DISA/JIEO SPEC 9139

NITFS TACO?2 Protocol to KY-68 Cryptographic
Device Technical Interface Specification (TIS),
(Effectivity 8).

DISA/JIEO SPEC 9140

NITFS TACO?2 Protocol to STU-III Cryptographic
Device Technical Interface Specification (TIS),
(Effectivity 8).

(Copies of DISA/JIEO Specifications may be obtained from DISA/JIEO/CFS/TBB, Fort Monmouth, NJ
07703-5613. Copies of DISA/JIEO Circular 9008 may be obtained from DISA/JIEOQ/JITC, Fort Huachuca, AZ
85613-7020.)

2.2 Non-Government publications. The following document(s) form a part of this document to the extent
specified herein. Unless otherwise specified, the issues of the documents which are DOD adopted are those
listed in the issue of the DODISS cited in the solicitation. Unless otherwise specified, the issues of documents
not listed in the DODISS are the issues of the documents cited in the solicitation.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ISO 3309 - High-Level Data Link Control Procedures - Frame
Structure, International Organization for
Standardization, Switzerland, 15 January 1992.

ISO 7498 - Open systems interconnection - basic reference
model International Organization for
Standardization, Switzerland.

ISO 8825 - Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1), International
Organization for Standardization, Switzerland,
15 December 1990.

18 June 1993 4

ISO 9171

MIL-STD-2045-44500

Recorded/Unrecorded Characteristics of 130 mm
Optical Disk Cartridges.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI X3.4-198

INTERNET RFCs

RFC 791

RFC 792

RFC 919

RFC 922

RFC 950

RFC 998

RFC 1055

RFC 1108

RFC 1112

American National Standard Code for Information
Interchange (ASCII), 1986.

Internet Protocol, Postel, J.B., 1981.

Internet Control Message Protocol, Postel, J.B.,
1981.

Broadcasting Internet datagrams, Mogul, J.C.,
1984.

Broadcasting Internet datagrams in the presence of
subnets, Mogul, J.C., 1984.

Internet standard subnetting procedure, Mogul,
J.C.; Postel, J.B., 1985.

NETBLT: A bulk data transfer protocol, Clark,
D.D.; Lambert, M.L.; Zhang, L., 1987.

Nonstandard for transmission of IP datagrams over
serial lines: SLIP, Romkey, J.L., 1988.

Security Options for the Internet Protocol, Kent, S.,
1991.

Host extensions for IP multicasting, Deering, S.E.,
1989.

(Non-Government standards and publications are usually available from the organization that prepare or
distribute the documents. These documents also may be available in or through libraries or other informational

services.)

2.3 Order of precedence. In the event of a conflict between the text of this standard and the references cited
herein, the text of this standard takes precedence. Nothing in this document, however, supersedes applicable
laws and regulations unless a specific exemption has been obtained.

MIL-STD-2045-44500

3. DEFINITIONS

3.1 Acronyms used in this standard. The following definitions are applicable for the purpose of this

standard. In addition, terms used in this standard and defined in the FED-STD-1037B shall use the
FED-STD-1037B definition unless noted.

a. ANSI

b. ASCII

c. ASD(C?I)
d. ASN.1
e. BCH

f. BER

g. BERT

h. BPSK

i. CCITT
j. CFS

K. CRC

l. DAMA
m. DCE

n. DCPS
0. DDN

p. DISA

g. DISN

r. DOD

S. DODISS

American National Standards Institute
American Standard Code for Information Interchange

Assistant Secretary of Defense for Command, Control,
Communications, and Intelligence

Abstract Syntax Notation One

Bose-Chaudhuri-Hocquenghem

Bit Error Ratio

Bit Error Ratio Test

Binary Phase Shift Keying

International Telegraph and Telephone Consultative Committee
Center for Standards

Cyclic Redundancy Check

Demand Assignment Multiple Access

Data Circuit-terminating Equipment

Data Communications Protocol Standards

Defense Data Network

Defense Information Systems Agency (formerly DCA)
Defense Information Systems Network (formerly DDN)
Department of Defense

Department of Defense Index Specifications and Standards

aa.
ab.
ac.
ad.
ae.
af.

ag.
ah.
ai.

aj.

ak.

al.

am.

an.

ao.

DTE

EDAC

EDAC

FCS

FEC

FTP

GOSIP

HDLC

HF

ICMP

IHL

I1ISO

JIEO

LSB

LOS

MBZ

MOA

MSB

msec

NETBLT

MIL-STD-2045-44500
Data Terminal Equipment
Error Detection and Correction
Error Detection and Correction
Frame Check Sequence
Forward Error Correction
File Transfer Protocol
U.S. Government OSI Profile
High-level Data Link Control
High Frequency
Intelligence Community
Internet Control Message Protocol
Internet Header Length
Internet Protocol
International Organization for Standardization
Joint Interoperability and Engineering Organization (formerly JTC3A)
Least Significant Bit

Line of Sight

Must Be Zero
Memoranda of Agreement
Most Significant Bit
Milliseconds

NETwork BLock Transfer

ap.

aq.

ar.

as.

at.

au.

av.

aw.

ax.

ay.

az.

ba.

bb.

bc.

bd.

be.

bf.

bg.
bh.

NITF

NITFS

NRTS

NTB

OSlI

RFC

SID

SIDS

SLIP

TACO2

TBR

TCP

TIS

TRI-TAC

UDP

UHF

uib

VHF

ul

MIL-STD-2045-44500
National Imagery Transmission Format
National Imagery Transmission Format Standards
National Imagery Transmission Format Reliable Transfer Server
National Imagery Transmission Format Standard Technical Board
Open Systems Interconnection
Request for Comment (Internet environment)
Secondary Imagery Dissemination
Secondary Imagery Dissemination System
Serial Line Internet Protocol
TActical COmmunications protocol 2
To Be Resolved
Transmission Control Protocol
Technical Interface Specification
Tri-Service Tactical Communications
User Datagram Protocol
Ultra High Frequency
Unique Identifier
Very High Frequency

Unnumbered Information

3.2 Definitions used in this standard. The definitions used in this document are defined as follows:

a. Bit error ratio test (BERT) - A function or sequence of functions that compares a received data
pattern with a known transmitted pattern to determine the level of transmission quality. Note: Can be used as
an adjective, for example, "Bit error ratio test packets" are packets used in a bit error ratio test.

MIL-STD-2045-44500

b. Bit-stuffing - For NITFS, in High-level Data Link Control (HDLC), a technique used to avoid
spurious appearances of the flag within a frame.

c. Bose-Chaudhuri-Hocquenchem (BCH) codes - An important class of binary, block forward error
correction (FEC) codes. BCH codes offer a great deal of flexibility in terms of code rate and block length.
Hamming codes may be thought of as single error-correcting BCH codes.

d. Byte - A sequence of N adjacent binary digits, usually treated as a unit, where N is a non zero
integral number. Note: In pre-1970 literature, "byte" referred to a variable length field. Since that time the
usage has changed so that now it almost always refers to an 8-bit field. This usage predominates in computer
and data transmission literature; throughout this document, the term is synonymous with "octet."

e. Byte-stuffing - A procedure in which either the Huffman coder or the arithmetic coder inserts a zero
byte into the entropy-coded segment following the generation of an encoded hexadecimal OxFF byte. For the
purpose of NITFS, in Serial Line Internet Protocol (SLIP), a technique used to avoid spurious appearances of
the END character within a frame.

f. Client - An executing program or protocol layer that requests or receives services from a lower
protocol layer.

g. Criticality - Those portions of a message which must be received correctly for the message to be
useful are considered critical. Criticality provides a means for identifying those portions of a message.

h. Datagram - In packet-switching, a self-contained packet, independent of other packets, that carries
information sufficient for routing from the originating data terminal equipment to the destination data terminal
equipment, without relying on earlier exchanges between the equipment and the network. Note: Unlike virtual
call service, there are no call establishment or clearing procedures, and the network does not generally provide
protection against loss, duplication, or misdelivery.

i. Data link layer - Layer two in the 1ISO OSI Reference Model. The role of the data link layer is to
group the bits of the physical layer into frames, and to deal with transmission errors to allow the sending of
frames between adjacent nodes in the network.

j- Duplex - For the purpose of this MIL-STD, an operational mode in which frames may be transferred
across a link in both directions; i. e., half-duplex or full-duplex.

k. Effectivity - Some of the capabilities specified in this document are not required as of the issue date
of the document. All such capabilities are marked with effectivity numbers, for example, (Effectivity 1). Each
effectivity number will be replaced by a specific date in subsequent releases of this document.

I. Embedded FEC - For the purpose of this MIL-STD, FEC is an element of a hardware unit with
more general functionality.

10

MIL-STD-2045-44500

m. Error Detection and Correction (EDAC) - The application of one or several methods for the
detection and correction of errors in a bit stream. For the purpose of this MIL-STD, EDAC generally is used
synonymously with FEC, but is sometimes used to refer to error control systems that make use of a backward
channel (for example, retransmission requests).

n. Finite field - See Galois field.

0. Forward Error Correction (FEC) - A system of error control for data code transmission wherein the
receiving device has the capability to detect and correct any character or block that contains fewer than a
predetermined number of symbols in error. Note: FEC is accomplished by adding bits to each transmitted
character or code block using a predetermined algorithm.

p. Frame - 1. For the purpose of this MIL-STD, in data transmission, a sequence of contiguous bits
bracketed by and including uniquely recognizable delimiters. 2. For the MIL-STD-188-198 (JPEG), a group of
one or more scans (all using the same DCT-based or lossless process) through the data of one or more of an
image.

g. Full duplex - For the purpose of this MIL-STD, an operational mode in which frames may be
simultaneously transferred across a link in both directions. A TACO2 connection supports image transmission
in only one direction at a time; return frames contain control information only.

r. Galois field - An algebraic structure commonly used for error correction and cryptographics
calculations. A Galois field is a field whose set of elements is finite. The field operations of addition,
subtraction, multiplication, and division are defined.

s. International Organization for Standardization (1SO) - A global standards body.

t. 1SO OSI Reference Model - A seven layer protocol stack defined by the I1SO.

u. Keepalive - A signal whose purpose is to inform a process that a connection is still in operation.

v. Metamessage - A collection of information related to a NITF message, which is transmitted in
association with the message.

w. Modem - Acronym for Modulator-Demodulator. A device that modulates and demodulates signals.
Note: 1. Modems are primarily used for converting digital signals into quasi-analog signals for transmission
over analog communication channels and for reconverting the quasi-analog signals into digital signals. Note: 2.
Many additional functions may be added to a modem to provide for customer service and control features.

X. Multicast - Transmission of a single message to a group of receivers.

11

MIL-STD-2045-44500

y. Network layer - Layer three in the ISO OSI Reference Model. The role of the network layer is to
transfer packets from their source node to their destination node by hopping through the intermediate nodes.

z. Octet - A byte of eight binary digits usually operated upon as an entity.
aa. Packet - In data communication, a sequence of binary digits, including data and control signals, that
is transmitted and switched as a composite whole. The data, control signals, and possibly error control

information are arranged in a specific format.

ab. Physical layer - Layer one in the ISO OSI Reference Model. The role of the physical layer is that
of raw transmission of unformatted information.

ac. Port - For the NITFS, the identifier that transport protocols use to distinguish among multiple
destinations in a host computer.

ad. Protocol stack - A set of multiple layers that describe the function of a network or communication
system with the uppermost layer is being associated with the application and the lowest layer's being associated
with the physical communications channel.

ae. Reed-Solomon code - For the purpose of NITF, a class of FEC codes in which the input and output
symbols are multi-bit symbols and are treated as Finite Field elements.

af. Simplex - For NITFS, providing transmission in only one preassigned direction.

ag. Validity - Validity provides a means of identifying those portions of a message known to contain
possible errors.

12

MIL-STD-2045-44500
4. GENERAL REQUIREMENTS

4.1 QOverview. To exchange NITFS messages between systems, the participants must agree on the
mechanism and protocols to be used to support the exchange. In some cases, connectivity and transfer
protocols already may exist; for instance, Defense Information Systems Network (DISN)-connected hosts
can use File Transfer Protocol (FTP) for moving standard format files. In other cases, connectivity is
available, but common transfer protocols are not, or the available protocols are intolerably inefficient; for
instance, DISN protocols run very slowly over slow-turnaround half-duplex circuits, and cannot run at all
over simplex circuits. TACO?2 provides efficient NITFS message transfer across point-to-point and
point-to-multipoint links (tactical radio circuits) where neither DISN nor other current GOSIP protocols are
suitable.

4.1.1 Approach. TACO?2 uses a layered model, similar in philosophy to the ISO Open Systems

Interconnection Reference Model. The TACO2 model is shown on figure 1; the components are described
in the following subparagraphs.

13

MIL-STD-2045-44500

User Process

Application/
TACOZ NRTS Presentation/
Session Layers

Header Abbreviation | Header Abbreviation Sublayer

FEC FEC Sublayer Data Link Layer

Physical Layer

FIGURE 1. The TACO2 message transfer reference model .

4.1.2 NITES reliable transfer server for TACO2 (TACO2 NRTS). The TACO2 NRTS controls the
communications service to be used, exchanges the message and associated information with it, and acts as a
session layer to allow resumption of interrupted transfers.

4.1.3 NETBLT. NETwork BLock Transfer (NETBLT) shall provide the reliable, flow-controlled
transport level protocol designed to achieve high throughput across a wide variety of networks. It allows
the sending client (the NRTS) to break the message being sent into a series of buffers, and to pass those
buffers to NETBLT as information or space availability permits. Buffers are broken into packets for
transmission. The critical element for performance is multiple buffering, so that new buffers can be sent

14

MIL-STD-2045-44500

while earlier ones await confirmation, and packet flow can be nearly continuous from sender to receiver.
NETBLT uses a system of timers, acknowledgments, and recovery mechanisms to deal with network
congestion, long delays, and errors. NETBLT can operate in full-duplex or half-duplex modes. The
simplex case uses a stripped-down version of the same NETBLT protocol.

4.1.4 1P. For the next lower layer, TACO2 shall use the connectionless, unreliable datagram delivery
Internet Protocol (IP), which includes the Internet Control Message Protocol (ICMP).

4.1.5 Header Abbreviation sublayer. TACO2 provides a mechanism for header abbreviation across
point-to-point links. Using the header abbreviation sublayer is optional; its inclusion in any compliant
implementation of TACO2 shall be mandatory (Effectivity 3).

4.1.6 FEC. FEC is a mandatory component of the TACO2 protocol stack whose use in a particular
circuit is user selectable (Effectivity 1). Two coding algorithms are defined: one is a Reed-Solomon code
for operation in moderate error environments, the other is a combination of Reed-Solomon and
Bose-Chaudhuri-Hocguenghem (BCH) coding for high error environments.

4.1.6.1 Use of FEC and BERT in TACO2 transmissions. TACO?2 transmissions and SIDS devices
performing TACO2 transmissions shall comply with the requirements in Sections 4 and 5 of this document.
FEC codes are defined in 5.4.2 and appendix C. These codes are required for compliance to the extent
specified in 5.4.2.2. These codes are known as FEC-1 and FEC-II. Section 5.4.2.3 specifies the detailed
requirements for Bit Error Ratio Testing (BERT).

4.1.6.2 Placement of FEC within network protocol stack . The placement of FEC within the
transmissions system may be approached in several ways. In most cases of practical importance, the FEC
is situated within the OSI Data Link Layer, and as such will be below the level of the Network Layer
(which in TACO?2 is IP) and above the Physical Layer. Placements other than as part of the Data Link
Layer are possible; these possibilities are not treated in this document.

4.1.6.3 Placement of FEC within data link layer. Three possible placements of FEC within the Data
Link Layer are illustrated on figure 2. Each placement shown is applicable to NITFS transmissions. The
placement shown on figure 2, known as packet coding, allows implementation in software and shall be the
placement used for the FEC-1 and FEC-11 codes.

15

MIL-STD-2045-44500

Frame Frame FEC
Encapsulation Encapsulation Sublaver
Sublayer Sublayer y
Frame
crypto
sub}lgzyer Sugfjac . Encapsulation
¥ Sublayer
crypto crypto
sublayer sublayer
Channel Channel Packet
Coding Coding Coding

of Black Data of Red Data

(a) (b) (c)

Key: Red - Black

FIGURE 2. Possible positioning of the FEC within the data link layer .

4.1.7 HDLC and SLIP. HDLC and SLIP shall provide link-layer packet encapsulation for

16

MIL-STD-2045-44500

synchronous and asynchronous links respectively. TACO?2 uses only the framing, bit-stuffing, and Cyclic
Redundancy Check (CRC) components of HDLC. SLIP is a simple mechanism that provides encapsulation
and byte-stuffing for use across asynchronous links.

4.1.8 Physical layer. The physical layer used with TACO2 depends on the cryptographic device and
communications circuit used. The requirements for specific circuits are published as DISA/JIEO Technical
Interface Specifications. Signal voltage sense shall be as specified in MIL-STD-188-114A.

4.2 Notation.
4.2.1 Hexadecimal representation. Throughout this document, a sequence of digits preceded by Ox

(digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include A through F, which
represent the decimal values 10 through 15.

4.2.2 Data transmission order. The order of transmission of the header and data described in this
document is resolved to the octet level. Whenever a diagram shows a group of octets, the order of
transmission of those octets shall be the normal order in which they are read in English. On figure 3, the
octets are transmitted in the order in which they are numbered.

0 1 2 3
012345678901234567890123456789401
1 2 3 4
5 6 7 8
9 10 11 12

FIGURE 3. Transmission order of bytes.

Whenever an octet represents a numeric quantity, the left most bit in the diagram is the high order or most
significant bit (MSB). The bit labeled 0 is the MSB, and the bit labeled 7 is the least significant bit (LSB).
For example, figure 4 represents the value 106 (decimal), which is Ox6A (hexadecimal).

17

MIL-STD-2045-44500

MSB LSB
0O 1 2 3 4 5 6 7
O/1/1]{0j1]0 110

FIGURE 4. Significance of bits.

Similarly, whenever a multi-octet field represents a numeric quantity, the left most bit of the whole field is
the most significant bit. When a multi-octet quantity is transmitted the most significant octet shall be
transmitted first. Bit transmission order shall be as specified by the link layer (normally LSB first).

18

MIL-STD-2045-44500
5. DETAILED REQUIREMENTS

TACO2 comprises the following protocol layers: the TACO2 NRTS, NETBLT, IP, Header
Abbreviation, FEC, and either HDLC or SLIP. Detailed requirements for those protocol layers are
provided in this section.

5.1 NITES reliable transfer server for TACO2 (TACO2 NRTS). The TACO2 NRTS shall provide a
(locally-defined) sending and receiving interface to the NITFS user process. It shall transfer (and if
necessary act upon) the message and the metamessage to its peer TACO2 NRTS via NETBLT, and it may
pass a destination IP address (at the message source) and exchange a set of parameters with NETBLT. The
TACO2 NRTS described here assumes an active sender and a passive receiver (*push™ operation); as of the
effectivity date (Effectivity 4) the TACO2 NRTS also shall support an active receiver and passive sender
("pull™ operation).

5.1.1 Metamessage definition. The metamessage shall be used to communicate information about the
NITFS message between the source and the destination system (and intermediate systems, if any). It shall
be transferred along with the NITFS message itself by TACO2, in a manner that allows the receiver to
make an unambiguous connection between message and metamessage. In duplex communications, a return
metamessage shall be transferred from receiver to sender, to allow possible negotiation or confirmation of
some component values as specified in 5.1.1.2. The notation for the information about the message is
designed to allow for additional attributes as the need arises, but with a minimum of additional complexity.

5.1.1.1 Description. The metamessage shall be a null-terminated string of 8-bit American Standard
Code for Information Interchange (ASCII) letters, numbers, and some special characters (MIL-STD-2500
for the definition of the acceptable set of ASCII). The maximum length of the metamessage is unbounded
(although implementations may have a limit on the length they can accept; this limit shall be at least 255
characters, and characters beyond the limit may be discarded), and the end of the metamessage shall be
denoted by the occurrence of a null byte (hexadecimal 0x00). The individual components of the
metamessage shall have the form:

<<component-name=>=<<component-value=>

where:
a. <<component-name=> shall be chosen from the list of components (see 5.1.1.2)
b. "="is the literal ASCII character
C. <<component-value= is a sequence of ASCII characters, not including the space or comma

characters, providing the value for that component (numbers shall be given in ASCII
decimal representation).

19

MIL-STD-2045-44500

Components shall be separated by spaces or commas. The maximum length of the name components
(message name, file name, sender name, and recipient name) is unbounded, although implementations may
have a limit on the length they can accept; this limit shall be at least 32 characters for each such
component. The only exception to the component form given above is the mandatory first component,
Version, which shall be three bytes with hexadecimal value 0OX5E0101. The number of occurrences of
components that may occur multiple times is unbounded, but may be limited by the acceptable length of the
metamessage. Components not specifically permitted to occur multiple times in a single metamessage shall
occur no more than once in a metamessage.

5.1.1.2 Components. The following is a list of the metamessage components that may be supplied,
and shall be recognized, by TACO2. Each component description includes an indication of whether it is
optional or mandatory, its default value if it is absent, its form, and its meaning. Except for the mandatory
initial component Version, the sequence of components in the metamessage is immaterial. Table |
summarizes the metamessage components.

TABLE |I. Metamessage components.

NAME FORMAT PRESENCE |DEFAULT
Version 0x5E0101 Mandatory
Message Name MNAME=<message-name= Mandatory None
File Name FNAME=<file-name= Optional None
Message Type TYP=<message-type=> Optional NTF
Message Length LEN=<message-length= Optional None
Start Point STRT=<start-point= Optional 0
Sender Name FROM=<name= Optional None
Recipient Name TO=<name=> Optional None
Validity NVAL=<first-octet=:<last-octet= Optional All valid
Criticality CRIT=<first-octet=:<last-octet= Optional All equal
Geolocation GEOG=<<ddmmss=<N|S=<dddmmss=< | Optional None
E|W=>

20

MIL-STD-2045-44500

5.1.1.2.1 Version. (Mandatory). This shall be the first three bytes of the metamessage, and shall be
hexadecimal O0x5E0101. The particular representation was chosen for compatibility with possible future
alternative Abstract Syntax Notation One (ASN.1) representations of the metamessage.

5.1.1.2.2 Message name. (Mandatory, must occur within the first 255 characters of the metamessage). No
default. MNAME=<<message-name=>, where <<message-name= shall be a unique identifier for the NITFS
message. (May be used for accountability tracking in some systems.) The <<message-name== shall be unique
for communication between two systems, as it will be used to identify (and possibly combine) multiple copies of
the same message and to resume interrupted transfers (see 5.1.1.2.6). The originator may generate
<<message-name=> with any method that meets the uniqueness requirement; file modification date-time may be
included to help ensure unigueness.

5.1.1.2.3 File name. (Optional). No default. FNAME=<file-name=, where <file-name= shall be a
name under which the message may be stored in the destination system (it might be the name under which the
originator stored it). The destination is under no obligation to use this name. If the receiver includes this
component in a metamessage returned to the sender, <<file-name= shall be the name under which the message
will be stored in the receiving system.

5.1.1.2.4 Message type. (Optional). Default is NTF, signifying a NITF message.
TYP=<<message-type=, where <<message-type= shall be the kind of message being transferred. NOTE:
Other message types, such as text and spreadsheets, are To Be Resolved (TBR).

5.1.1.2.5 Message length. (Optional). No default. LEN=<<message-length=, where <<message-length=
shall be a decimal number, represented in ASCII, describing the number of bytes in the NITFS message.

5.1.1.2.6 Start point. (Optional). Default = 0. STRT=<<start-point=, where <<start-point= shall be the
decimal offset, represented in ASCII, of the first octet proposed to be transferred. (The octets in a file are
numbered starting with 0). This may be used to resume interrupted transfers. If the receiver includes this
component in a metamessage returned to the sender, <<start-point= shall be the offset from the first octet in the
file to be transferred, which shall be less than or equal to that proposed by the sender. In this case, the sender
shall use the returned value as the actual start point of the transfer.

5.1.1.2.7 Sender name. (Optional). No default. FROM=<<name=, where <<name=> shall be a
meaningful ASCII name of the sender.

5.1.1.2.8 Recipient name. (Optional). No default. TO=<<name=, where <<name= shall be a meaningful
ASCII name of a recipient. This component may occur multiple times in a single metamessage.

5.1.1.2.9 Validity. (Optional). Default is to assume that the entire message is valid.
NVAL=<first-octet=:<<last-octet=, where <<first-octet= and <<last-octet= shall be the inclusive boundaries
of a possibly invalid portion of the message. The first octet of a message is numbered 0. This component may
occur multiple times in a single metamessage. The receiver may use this information to assist in message
interpretation.

21

MIL-STD-2045-44500

5.1.1.2.10 Criticality. (Optional). Default is to assume that the entire message is equally critical.
CRIT=<first-octet=:<last-octet=, where <first-octet= and <<last-octet= shall be the inclusive boundaries
of a portion of the message which is critical to the interpretation of the overall message. The first octet of a
message is numbered 0. This component may occur multiple times in a single metamessage. Special actions
may be taken to increase the probability of correct reception of this portion of the message (see 5.2.8.1.1).

5.1.1.2.11 Geolocation. (Optional). No default. GEOG=<<ddmmss=<<N|S=<<dddmmss=<E|W=,
with coordinates in the Geographic Coordinate System. The coordinate shall refer to the center of the image in
the message. The first element represents degrees, minutes, and seconds of latitude; the second is N (north) or
S (south); the third is degrees, minutes, and seconds of longitude; and the last is E (east) or W (west).

5.1.1.2.12 Additional components. Other components, with the same form, are reserved for future
versions of TACO2.

5.1.1.2.13 Unrecognized components. An unrecognized component (such as, one that does not appear on
this list) may be discarded by the recipient, and shall not disrupt the protocol exchange.

5.1.2 TACO2 NRTS operation. This section describes the interaction between the TACO2 NRTS and
NETBLT. The details of the interaction and interfaces between protocol layers are not specified herein;
however, the complete TACO?2 protocol stack shall interact with other TACO2 protocol stack implementations
in a manner consistent with this description. The descriptions in this section are supplemented with time
sequence diagrams, which illustrate the relationship between operations across the TACO2 NRTS to NETBLT
interface. The vertical lines represent the interfaces, and time increases down the diagram.

5.1.2.1 Summary of operation. When a message is to be transferred, the TACO2 NRTS requests that
NETBLT open a connection to the intended receiver. Once the connection is opened successfully, the message
is transferred between the TACO2 NRTS and NETBLT as a series of buffers at both the sending and receiving
end. All buffers except the last one shall be the same size. When the transfer is complete, the NETBLT
connection is closed. If the entire message is not transferred successfully, the sending TACO2 NRTS may
attempt to open a new connection and restart the transfer (see 5.1.1.2.6). Status information not described here
may be provided by NETBLT to the TACO2 NRTS, and by the TACO2 NRTS to the user process.

5.1.2.2 Connection establishment. The sequence of events by which the TACO2 NRTS establishes a
connection via NETBLT is shown on figure 5.

22

MIL-STD-2045-44500

NETBLT - Receiving NRTS

Sending NRTS — NETBLT

4+—Listen_Request
Connection_Request —p

~+—pConnection_Request_Received

.-4—Connection_Request_Response

ConneotionfResponse{—'--""""”w

Time
v

FIGURE 5. TACO2 NRTS connection establishment.

5.1.2.2.1 Sending end system.

5.1.2.2.1.1 Connection_Request. The TACO2 NRTS shall request that NETBLT open a connection to
the intended receiver with a Connection_Request, which has the following parameters:

a. Foreign host. A 32-bit IP address for the destination of the NITFS message.
b. Foreign port. Shall be 1.

C. Checksum flag. Shall require data checksumming.

d. Send/Receive flag. Shall indicate send.

e. Metamessage. Shall be as specified in 5.1.1

f. Proposed maximum number of outstanding buffers.

g. Proposed buffer size.

23

MIL-STD-2045-44500

5.1.2.2.1.2 Connection_Response. NETBLT shall respond to the Connection_Request from the
TACO2 NRTS with Connection_Response, which has two parameters:

a. Success/failure flag.
b. Return metamessage, if successful; reason for failure, if unsuccessful.

5.1.2.2.2 Receiving end system.

5.1.2.2.2.1 Listen_Request. When the TACO2 NRTS is prepared to receive a message, it shall invoke
NETBLT with a Listen_Request, which has the following parameters:

a. Local port. Shall be 1.
b. Maximum acceptable number of outstanding buffers.
C. Maximum acceptable buffer size.

5.1.2.2.2.2 Connection_Request_Received. When a connection is opened by a foreign host, NETBLT
shall respond to the Listen_Request of the receiving-side TACO2 NRTS with
Connection_Request_Received, which has the following parameters:

a. Foreign host. The 32-bit IP address of the source of the NITFS message.
b. Send/receive flag. Should indicate send (by the other end).
C. Metamessage. Shall be the metamessage provided by the sending TACO2 NRTS.

5.1.2.2.2.3 Connection_Request_Response. The TACO2 NRTS shall respond to NETBLT with
Connection_Request_Response, which has two parameters:

a. Accept/reject flag.
b. Return metamessage, as specified in 5.1.1, if successful; reason for rejection, if
unsuccessful.

24

MIL-STD-2045-44500

5.1.2.3 Data transfer. The sequence of actions by which the TACO2 NRTS transfers a message via
NETBLT is shown on figure 6. This sequence shall be repeated until all data in the message have been
transferred, unless the transfer is terminated prematurely.

NETBLT - Receiving NRTS
Sending NRTS — NETBLT
Send_Buffer_Setup “— ———»Receive_Buffer_Setup
Send_Buffer Response —» +—Receive_Buffer_Response
Send_Flush_Buffer “— ———»Receive_Flush_Buffer
Time
v

FIGURE 6. TACO2 NRTS data transfer.

5.1.2.3.1 Sending end system.

5.1.2.3.1.1 Send_Buffer_Setup. The sending NETBLT shall request the next buffer full of data from
the TACO2 NRTS with Send_Buffer_Setup, which has two parameters:

a. Buffer number, where buffers are numbered consecutively starting with 0.
b. Requested size of the buffer.

5.1.2.3.1.2 Send_Buffer_Response. The TACO2 NRTS shall respond to NETBLT with
Send_Buffer_Response, which has the following parameters:

a. Identification of the buffer with data to be sent. The data in that buffer shall be consecutive

bytes of the message to be transferred, starting with byte number ((buffer
number-1)*(requested size of the buffer)), where bytes are numbered starting with 0.

b. Actual size of the buffer.

C. Last buffer flag. Set if this is the last buffer of the message.

25

MIL-STD-2045-44500

5.1.2.3.1.3 Send_Flush_Buffer. When NETBLT has finished with the buffer, it shall invoke
Send_Flush_Buffer, which has one parameter: identification of the buffer.

5.1.2.3.2 Receiving end system.

5.1.2.3.2.1 Receive_Buffer_Setup. The receiving NETBLT shall request an empty buffer from the
TACO2 NRTS with Receive_Buffer_Setup, which has two parameters:

a. Buffer number.
b. Requested size of the buffer.

5.1.2.3.2.2 Receive_Buffer_Response. The TACO2 NRTS shall respond to NETBLT with
Receive_Buffer_Response, which has one parameter: identification of the buffer.

5.1.2.3.2.3 Receive_Flush_Buffer. When NETBLT has filled the buffer, it shall invoke the TACO2
NRTS with Receive_Flush_Buffer, which has the following parameters:

a. Identification of the buffer. The data in that buffer shall be consecutive bytes of the
message to be transferred, starting with byte number ((buffer number-1)*(requested size of
the buffer)), where bytes are numbered starting with 0. Received buffers may be returned
out of order by NETBLT; the correct placement of data in the received message shall be
established by the TACO2 NRTS, by correctly associating the buffer identification and the
buffer number.

b. Actual size of the buffer.
C. Last buffer flag. Set if this is the last buffer of the message.

5.1.2.4 Connection termination. A TACO2 message transfer may be terminated by NETBLT or by
the TACO2 NRTS. The possible terminations are shown on figure 7.

Either NRTS - NETBLT

Close

Exception_Report ¢—————

Quit_Request ———————— |

Abort_Request ——————»

FIGURE 7. TACO2 NRTS connection termination .

26

MIL-STD-2045-44500

5.1.2.4.1 NETBLT-invoked termination.

5.1.2.4.1.1 Close. After all buffers comprising the message have been transferred, NETBLT shall notify
both the sending and receiving NRTS with a Close, which has one parameter: List of possibly invalid bytes (this
parameter is only meaningful in receive simplex operation; in any other operation, it shall be empty).

5.1.2.4.1.2 Exception_Report. If NETBLT is unable to complete the transfer, it shall send an
Exception_Report to the TACO2 NRTS. Exception_Report has one parameter: Reason for the report.

5.1.2.4.2 TACO2 NRTS-invoked termination.

5.1.2.4.2.1 Quit-request. The TACO2 NRTS shall invoke Quit_Request to cause an orderly but premature
termination of a TACO2 message transfer. Quit_Request has one parameter: Reason for request.

5.1.2.4.2.2 Abort-request. The TACO2 NRTS shall invoke Abort-Request to cause an immediate
termination of a TACO2 message transfer. Abort_Request has one parameter: Reason for request.

5.2 Transport layer - NETBLT. The bulk data transfer protocol NETBLT forms the transport layer of the
TACO?2 protocol suite. NETBLT in TACO2 works by opening a connection between a sender and a receiver
(at the sender’s request), transferring a message in one or more buffers, and closing the connection. Each
buffer is transferred as a sequence of packets; the interaction between sender and receiver is primarily on a
per-buffer basis. An overview of NETBLT is provided in 5.2.1; further explanation and detailed requirements
are found in the following sections. The material here assumes the existence of a full-duplex connection
between sender and receiver, where packets can be transferred in both directions concurrently. Changes for
half-duplex and simplex cases are provided in 5.2.7. Specific packet types are identified in the following
sections by upper-case names (DATA packets), in contrast with packet functions (keepalive packets), which are
accomplished by more than one packet type.

5.2.1 NETBLT full-duplex operations. NETBLT opens a connection between two “clients™ (the “sender"
and the "receiver™), transfers the data in a series of large data aggregates called "buffers," and then closes the
connection. (In TACQO2, those clients are the TACO2 NRTS layer). NETBLT transfers each buffer as a
sequence of packets.

5.2.1.1 Single-buffer operation. In its simplest form, a NETBLT transfer works as follows: the sending
client loads a buffer of data and passes it to the NETBLT layer to be transferred. NETBLT breaks the buffer up
into packets and sends these packets across the network via IP datagrams. The receiving NETBLT loads these
packets into a matching buffer. When the last packet in the buffer should have arrived at the receiver, the
receiving NETBLT checks whether all packets in that buffer have been received correctly. If some packets
have not been received correctly, the receiving NETBLT requests that they be resent. When the buffer has
been received completely, the receiving NETBLT passes it to the receiving client. When a new buffer is ready
to receive more data, the receiving NETBLT notifies the sender that the new buffer is ready, and the sender
prepares and sends the next buffer in the same

27

MIL-STD-2045-44500

manner. This continues until all the data has been sent; at that time the sender notifies the receiver that the
transmission has been completed. The two sides then close the connection.

5.2.1.2 Multiple-buffer operation. As described in 5.2.1.1, the NETBLT protocol is "lock-step."” Action
halts after a buffer is transmitted, and begins again after confirmation is received from the receiver of data.
NETBLT provides for multiple buffering, so that the sending NETBLT can transmit new buffers while earlier
buffers are waiting for confirmation from the receiving NETBLT.

5.2.2 Buffers and packets.

5.2.2.1 Buffers. The data to be transmitted shall be broken into buffers by the sending client. Each buffer
shall be the same size, except for the last buffer. During connection setup, the sending and receiving NETBLTSs
shall negotiate the buffer size. Buffer sizes shall be in bytes only; data shall be placed in buffers on byte
boundaries.

5.2.2.2 Packets. Buffers are broken down by NETBLT into sequences of DATA packets. DATA packet
size shall be negotiated between the sending and receiving NETBLTSs during connection setup. All DATA
packets shall be the same size. The last packet of every buffer is not a DATA packet but rather an LDATA
packet. DATA and LDATA packets are identical in format except for the packet type.

5.2.3 Flow control. NETBLT uses two strategies for flow control, one at the client level and one internal.

5.2.3.1 Client level flow control. The sending and receiving NETBLTSs transmit data in buffers; therefore,
client flow control is by buffer. Before a buffer can be transmitted, NETBLT confirms that both clients have
set up matching buffers, that one is ready to send data, and that the other is ready to receive data. Either client
can control data flow by not providing a new buffer. Clients cannot stop a buffer transfer once it is in progress,
except by aborting the entire transfer.

5.2.3.2 Internal flow control. The internal flow control mechanism for NETBLT is rate control. The
transmission rate is negotiated by the sending and receiving NETBLTSs during connection setup and after each
buffer transmission. The sender uses timers to maintain the negotiated rate, by controlling the time to transmit
groups of packets. The sender transmits a burst of packets over the negotiated time interval, and sends another
burst in the next interval, therefore, NETBLT"s rate control has two parts, a burst size and a burst interval, with
(burst interval)/(burst size) equal to the average transmission time per packet.

5.2.3.3 Elow control parameter negotiation. All NETBLT flow control parameters (packet size, buffer
size, number of buffers outstanding, burst size, and burst interval) shall be negotiated during connection setup.
The negotiation process is the same for all parameters. The client initiating the connection (the sender) shall
send a value for each parameter in its OPEN packet. The other client (the receiver) shall compare these values
with the highest-performance values it can support. The receiver can modify any of the parameters, but only by
making them more restrictive, such as, smaller packet size, smaller buffer size, fewer buffers, smaller burst
size, and larger burst interval. The (possibly modified) parameters shall be sent back to the sender in the
RESPONSE packet.

28

MIL-STD-2045-44500

5.2.3.4 FElow control parameter renegotiation. The burst size and burst interval also may be
re-negotiated after each buffer transmission to adjust the transfer rate according to the performance
observed from transferring the previous buffer. The receiving end shall send burst size and burst interval
values in its OK messages (described in 5.2.5.2.1). The sender shall compare these values with the values
it can support. It then may modify either of the parameters, but only by making them more restrictive.
The modified parameters shall then be communicated to the receiver in DATA, LDATA, or NULL-ACK
packets.

5.2.3.5 Client-controlled flow. (Effectivity 3). A burst interval value of zero shall have a special
meaning: internal flow control shall be turned off, so that only client level flow control shall be in effect.
In this case, the sending NETBLT shall transmit packets without regard for the rate control mechanism.
When using client-controlled flow, the receiver shall use an alternative method for data timer estimation
(see 5.2.5.2.4.3).

5.2.4 Checksumming. NETBLT shall use checksums to validate the contents of packets and packet
headers unless packet integrity is assured by the data link layer. The checksum value shall be the bitwise
negation of the ones-complement sum of the 16-bit words being checksummed. On twos-complement
machines, the ones-complement sum can be computed by means of an ""end around carry"; that is, any
overflows from the most significant bit are added into the least significant bits. See figure 8 for an
example. If the quantity to be checksummed has an odd number of bytes, it shall be padded with a final
null byte (binary 0°s) to make the number of bytes even for the purpose of checksum calculation. The
extra byte shall not be transmitted as part of the packet, but its existence shall be assumed at the receiving
end for checksum verification.

Word 1 0001 (Note: all numbers are in hexadecimal)
Word 2 F203
Word3 F4F5
Word 4 _ F6F7
Sum showing carry: 2DDFD
Sum without carry: DDFD
Carry: 2
Ones-complement sum: DDF2
Complement for checksum: 220D

FIGURE 8. Example of checksumming.

5.2.5 NETBLT protocol operation. Each NETBLT transfer shall have three stages: connection setup,
data transfer, and connection close. The stages are described in detail below, along with methods for
ensuring that each stage completes reliably. State diagrams are provided at the end of the description for
each stage of the transfer. Each transition in the diagrams is labeled with the event that causes the
transition, and optionally, in parentheses, actions that occur at the time of the transition.

29

MIL-STD-2045-44500

5.2.5.1 Connection setup. A NETBLT connection shall be set up by an exchange of two packets between
the sending NETBLT and the receiving NETBLT. The sending end shall send an OPEN packet; the receiving
end shall acknowledge the OPEN packet in one of two ways: it shall either send a REFUSED packet, indicating
that the connection cannot be completed for some reason, or it shall complete the connection setup by sending a
RESPONSE packet. After a successful connection setup, the transfer can begin. Figure 9 illustrates the opening
of a connection by a sender, and figure 10 shows the same process for a receiver.

o

Open Timer timeout & > max # OPENs sent

REFUSED received

Send request from client
(Send OPEN, start Open Timer)

RESPONSE received
(clear Open Timer)

FIGURE 9. Sender open state diagram.

Open Timer timeout & < max # OPENs sent
(send OPEN, start Open Timer)

Acceptable OPEN received

Inactive (Send RE]FUS]ED)

Acceptable OPEN received
(Send RESPONSE)

Unacceptable OPEN received
(Send REFUSED)

Acceptable OPEN received

Connected (Send RESPONSE)

FIGURE 10. Receiver open state diagram.

30

MIL-STD-2045-44500

5.2.5.1.2 Death timeout. Each side of the connection shall transmit its death-timeout value in seconds in
the OPEN or the RESPONSE packet. The death-timeout value shall be used to determine the frequency with
which to send keepalive packets during idle periods of an opened connection (death timers and keepalive packets
are described in 5.2.5.2.5 and 5.2.5.2.6).

5.2.5.1.3 Port number. The sending NETBLT shall specify a passive client through a client-specific
"well-known" (see 5.2.9.1.2) 16-bit logical port number on which the receiving end listens. The sending client
shall identify itself through a 32-bit Internet address and a locally unique 16-bit port number.

5.2.5.1.4 Client string. An unstructured, variable-length client message field is provided in OPEN and
RESPONSE packets for any client-specific information that may be required. In TACO2, this field shall be
used to transfer the metamessage provided by the TACO2 NRTS. In addition, a "reason for refusal™ field is
provided in REFUSED packets.

5.2.5.1.5 OPEN timer. Recovery for lost OPEN and RESPONSE packets shall be provided using timers.
The sending end shall set a timer when it sends an OPEN packet. When the timer expires, another OPEN
packet shall be sent, until some predetermined maximum number (at least five) of OPEN packets have been
sent. The timer shall be cleared upon receipt of a RESPONSE or REFUSED packet.

5.2.5.1.6 Connection ID. To prevent duplication of OPEN and RESPONSE packets, the OPEN packet
contains a 32-bit connection unique identifier (UID) that must be returned in the RESPONSE packet. This UID
prevents the initiator from confusing the response to the current request with the response to an earlier
connection request (there can only be one connection open between any pair of logical ports). Any OPEN or
RESPONSE packet with a port pair matching that of an open connection shall have its UID checked. If the
UID of the packet matches the UID of the connection, then the packet type shall be checked. If it is a
RESPONSE packet, it shall be treated as a duplicate and ignored. If it is an OPEN packet, the passive
NETBLT shall send another RESPONSE (on the assumption that a previous RESPONSE packet was sent and
lost, causing the initiating NETBLT to retransmit its OPEN packet). A non-matching UID shall be treated as an
attempt to open a second connection between the two ports and shall be rejected by sending a REFUSED
message.

5.2.5.2 Data transfer.

5.2.5.2.1 Single buffer transfer. The simplest full-duplex mode of data transfer shall proceed as follows.
The sending client shall set up a buffer full of data. The receiving NETBLT shall send a GO message inside a
CONTROL packet to the sender, signifying that it too has set up a buffer and is ready to receive data. Once the
GO message is received, the sender shall transmit the buffer as a series of DATA packets followed by an
LDATA packet. When the last packet in the buffer should have been received (as determined by a timer, see
5.2.5.2.4.2), if any packets of that buffer have not been received, the receiver shall send a RESEND message
inside a CONTROL packet containing a list of packets that were not received. The sender shall resend these
packets. This process shall continue until there are no missing packets. At that time the receiver shall send an
OK message inside a CONTROL packet, shall set up another buffer to receive data, and shall send another GO
message. The sender, having received the OK message, shall set up another buffer, wait for the GO message,
and repeat the process.

31

MIL-STD-2045-44500

5.2.5.2.2 Multiple buffer transfer. A more efficient full-duplex transfer mode uses multiple buffering,
in which the sender and receiver allocate and transfer buffers in a manner that allows error recovery or
successful transmission confirmation of previous buffers to be concurrent with transmission of the current
buffer. During the connection setup phase, one of the negotiated parameters is the number of concurrent
buffers permitted during the transfer. If more than one buffer is available, transfer of the next buffer shall
start right after the current buffer finishes, and the receiver is ready to receive the buffer. The receiver
shall signal that it is ready for the next buffer by sending a GO message. This is illustrated in the
following example. Assume the sender has received two buffers, A and B, in a multiple-buffer transfer,
with A preceding B. When A has been transferred and the sending NETBLT is waiting for either an OK or
a RESEND message for it, the sending NETBLT can start sending B immediately,. If the receiver of data
sends an OK for A, all is well; if it receives a RESEND, the missing packets specified in the RESEND
message shall be retransmitted. In the multiple-buffer transfer mode, all packets to be sent shall be ordered
by buffer number (lowest number first). Since buffer numbers increase monotonically, packets from an
earlier buffer shall always precede packets from a later buffer.

5.2.5.2.3 Recovering from lost control messages .

5.2.5.2.3.1 Control packet. NETBLT shall use a single long-lived control packet; the packet shall be
treated like a First-In-First-Out queue, with new control messages added on at the end and acknowledged
control messages removed from the front. The implementation shall place control messages in the control
packet and shall transmit the entire control packet, consisting of any unacknowledged control messages
plus new messages just added. The entire control packet shall also be transmitted whenever the control
timer expires. Since control packet transmissions are fairly frequent, unacknowledged messages may be
transmitted several times before they finally are acknowledged. The receiver may send zero or more
control messages (OK, GO, or RESEND) within a single CONTROL packet.

5.2.5.2.3.2 Control timer. Whenever the receiver sends a control packet, it shall start a control timer.
When the control timer expires, the receiving NETBLT shall resend the control packet and reset the timer.
The receiving NETBLT shall continue to resend control packets in response to control timer expiration
until either the control timer is cleared or the receiving NETBLT"s death timer (described in 5.2.5.2.5)
expires (at which time it shall shut down the connection). The appropriate initial control timer value is
constrained by the characteristics of the link. Subsequent control packets shall have their timer values
based on the network round-trip transit time (the time between sending the control packet and receiving the
acknowledgment of all messages in the control packet) plus a variance factor. The timer value shall be
updated continually, based on a smoothed average of collected round-trip transit times. The control timer
shall be set to the keepalive value when a packet is received from the sender with
high-acknowledged-sequence-number equal to the highest sequence number in the control packet most
recently sent (see 5.2.5.2.3.3). The current value of the control timer is provided to the sender in each OK
message.

32

MIL-STD-2045-44500

NOTE: The exact algorithm for control timer calculation is not a required part of this standard. The
recommended algorithm is as follows:

a. Initially, the round trip time is set to the keepalive value and the deviation is set to zero.

b. Thereafter, new smoothed round trip time = (1-a) * old smoothed round trip time +
a * latest round trip measurement

c. New deviation = (1-b) * old deviation + b *
| latest round trip measurement - old smoothed round trip time]

where a = 1/8 and b = 1/4, allowing computations to be done with add and shift operations. The control timer
is set equal to the new smoothed round trip time plus twice the new deviation, or to the keepalive value,
whichever is less, if the control packet is not empty. If the control packet is empty, the control timer is set to
the keepalive value.

5.2.5.2.3.3 Control message sequence number. Each control message shall include a sequence number,
which starts at one and increases by one for each control message sent. The sending NETBLT shall check the
sequence number of every incoming control message against all other sequence numbers it has received. It shall
store the highest sequence number below which all other received sequence numbers are consecutive (in
following paragraphs this is called the high-acknowledged-sequence-number) and shall return this number in
every packet flowing back to the receiver. The receiver shall remove control messages with sequence numbers
less than or equal to the high-acknowledged-sequence-number from the control packet. The receiver shall set its
control timer to the keepalive value (see 5.2.5.2.6) when it receives a packet from the sender with a
high-acknowledged-sequence-number equal to the highest sequence number in the control packet just sent.

5.2.5.2.3.4 Response to control messages. The sending NETBLT, upon receiving a CONTROL packet,
shall either set up a new buffer (upon receipt of an OK message for a previous buffer), mark data for resending
(upon receipt of a RESEND message), or prepare a buffer for sending (upon receipt of a GO message). If the
sending NETBLT is not in a position to send data, it shall send a NULL-ACK packet, which contains its
high-acknowledged-sequence-number (this permits the receiving NETBLT to acknowledge any outstanding
control messages), and wait until it can send more data.

5.2.5.2.4 Recovering from lost DATA and LDATA packets. NETBLT solves the problem of DATA and
LDATA packet loss by using a data timer for each buffer at the receiving end. The simplest data timer model
has a data timer set when a buffer is ready to be received; if the data timer expires, the receiving NETBLT shall
send a RESEND message requesting all missing DATA/LDATA packets in the buffer. When all packets have
been received, the timer shall be cleared. Data timer values shall be based on the amount of time taken to
transfer a buffer (as determined by the number of DATA packet bursts in the buffer times the burst interval)
plus a variance factor.

5.2.5.2.4.1 Send buffer state sequence. The state sequence for a sending buffer shall be as follows: when a
GO message for the buffer is received, the buffer is created, filled with data, and placed in a

33

MIL-STD-2045-44500

SENDING state. When an OK for that buffer has been received, it goes into a SENT state and may be
released. Figure 11 illustrates this sequence.

GO for buffer n received
(Create and fill buffer n)

o

Start sending buffer n
(Set Last—buffer—touched to n)

Sending

OK for buffer m received

Sent

(Remove buffer n)

FIGURE 11. Sending buffer state diagram.

5.2.5.2.4.2 Receive buffer state sequence. The state sequence for a receiving buffer is a little more
complicated. Assume existence of Buffer A. When a control message for Buffer A is sent, the buffer shall
move into state ACK-WAIT (it is waiting for acknowledgement of the control message). As soon as the
control message has been acknowledged, Buffer A shall move from the ACK-WAIT state into the ACKED
state (it is now waiting for DATA packets to arrive). At this point, the control message shall be removed
from the control packet. Buffer A shall stay in the ACKED state until a DATA, LDATA, or NULL-ACK
packet arrives with its "Last Buffer Touched" number greater than or equal to Buffer A’s number. At this
time, Buffer A's data timer shall be set to the time expected for the remaining packets in the buffer to be
received plus a variance, and Buffer A shall move to the RECEIVING state. (Note: This mechanism is
different from, and simpler than, the "loose/tight” timer mechanism described in Request for Comment
(RFC) 998). When all DATA packets for A have been received, it shall move from the RECEIVING
state to the RECEIVED state and may be passed to the receiving client. Had any packets been missing,
Buffer A's data timer would have expired; in that case, Buffer A shall move into the ACK-WAIT state
after sending a RESEND message. The sending of a RESEND message shall cause the

34

MIL-STD-2045-44500

data timers of all buffers currently in the RECEIVING state to be recalculated, since the presence of resend
packets will change the expected completion time for later buffers. The state progression would then move
as in the above example. Figure 12 illustrates this sequence.

NOTE: The exact algorithm for data timer estimation is not a required part of this standard. The
recommended algorithm is to compute the number of packets expected before the buffer is complete,
multiply that by the time required to transmit a packet, and add a variance of 50 percent. The time
required to transmit a packet is the burst interval divided by the burst size.

< max # buffers exist & last buffer not detected
(Create buffer n; send GO n)

Ack for buffer n GO RESEND sent
or RESEND received (set all receiving buffer Data Timers)
DATA/LDATA/NULL-ACK with Buffer n Data timeout &
last—buffer—touched > n received buffer n not complete
(set buffer n Data Timer) (add RESEND to control packet)

Receiving

Buffer n complete

Received

Buffer n flushed
(remove buffer n)

FIGURE 12. Receiving buffer state diagram.

5.2.5.2.4.3 Alternative method for data timer estimation. When the burst interval is set to zero, an
alternative method for estimating the time required to send a packet shall be used for the purpose of data
timer estimation. The alternative algorithm is to measure the elapsed time to receive a
consecutively-numbered sequence of packets, and to divide that time by the number of packets in the

35

MIL-STD-2045-44500

sequence to calculate the time required for transmission of a single packet. This value may then be used in
the algorithm recommended in 5.2.5.2.4.2. This value may be smoothed, in a manner consistent with that
recommended for control timer calculation in 5.2.5.2.3.2. A suggested initial value used by the receiver
for the time required to transmit a single packet is (sender’s death timeout value * packet size) / (buffer
size * maximum outstanding buffers * 4).

5.2.5.2.5 Death timers. At connection startup, each NETBLT shall send its death value to the other
end in the OPEN or the RESPONSE packet. As soon as the connection is opened, each end shall set its
death timer to its chosen value; this timer shall be reset every time a packet is received. When a
NETBLT"s death timer expires, it shall close the connection without sending any more packets. A
recommended value for the death timer is in 5.2.9.10.

5.2.5.2.6 Keepalive packets. NETBLT shall include a keepalive function, which sends packets
repeatedly at fixed intervals when a NETBLT has no other reason to send packets. The sender shall use
NULL-ACKSs as keepalive packets; the receiver shall use empty CONTROL packets. If the sending
NETBLT is not ready to send upon receipt of a control packet, it shall send a single NULL-ACK packet to
clear any outstanding control timers at the receiving end. Each end shall use the other end"s death-timeout
value to compute a frequency with which to send keepalive packets. The keepalive frequency shall be high
enough that several keepalive packets can be lost before the other end’s death timer expires; recommended
values are the sender’s death timer value divided by seven for the receiver, and the receiver’s death timer
value divided by eight for the sender. Keepalive intervals should be different to avoid repeated collisions
in half-duplex operations.

5.2.5.3 Terminating the connection. The four conditions under which a connection shall be terminated
are a successful transfer, a client quit or abort, a NETBLT abort, and a death timer timeout.

5.2.5.3.1 Successful transfer After a successful data transfer, NETBLT shall close the connection.

5.2.5.3.1.1 Receiver successful close. When the sender is transmitting the last buffer of data, it shall
set a "last-buffer” flag on every DATA packet in the buffer. The receiver shall recognize that the transfer
has completed successfully when all of the following are true: (1) it has received DATA packets with a
"last-buffer"” flag set, (2) all its control messages have been acknowledged, and (3) it has no outstanding
buffers with missing packets. The DONE packet shall be transmitted when the receiver recognizes that the
transfer has been completed successfully. At that point, the receiver shall close its half of the connection.
Figure 13 illustrates this sequence.

36

MIL-STD-2045-44500

Connected
(receiver)

Last buffer received &
all buffers disposed of &
all messages acked
(Send DONE)

l

Inactive

FIGURE 13. Receiver successful close state diagram .

5.2.5.3.1.2 Sender successful close. The sender shall recognize that the transfer has completed when
the following are true: (1) it has transmitted DATA packets with a "last-buffer” flag set and (2) it has
received OK messages for all its buffers. At that point, it shall "dally" for a predetermined period of time
before closing its half of the connection. If the NULL-ACK packet acknowledging the receiver's last OK
message was lost, the receiver has time to retransmit the OK message, receive a new NULL-ACK, and
recognize a successful transfer. The dally timer value shall be based on the receiver’s control timer value;
it shall be long enough to allow the receiver’s control timer to expire so that the OK message can be resent.
The sender shall use the receiver’s current control timer value to compute its dally timer value. A value of
twice the receiver’s control timer value is suitable for the dally timer. When the sender receives a DONE
packet, it shall clear its dally timer and close its half of the connection. Figure 14 illustrates this sequence.

Connected
(sender)

All buffers flushed
(Send NULL—ACK; set Dally Timer)

Dallvin OK message received
ying (Send NULL-ACK; set Dally Timer)

DONE received or Dally timeout

FIGURE 14. Sender successful close state diagram .

37

MIL-STD-2045-44500

5.2.5.3.2 Client QUIT. During a NETBLT transfer, one client may send a QUIT packet to the other,
to terminate the transfer prematurely. Since the QUIT occurs at a client level, the QUIT transmission shall
occur only between buffer transmissions. The NETBLT receiving the QUIT packet shall take no action
other than immediately notifying its client and transmitting a QUITACK packet. The QUIT sender shall
time out and retransmit until a QUITACK has been received or its death timer expires. The sender of the

QUITACK shall dally before quitting, so that it can respond to a retransmitted QUIT. Figure 15 illustrates
this sequence.

Connected
(sender)

QUIT received Quit request from client
(Send QUIT ACK (Send QU][T Set Quit Timer)

VAR

QUIT recelved QUIT Timer timeout
(Send QUIT— ACK Q‘“t ”le Q‘“t Sent (Send QUIT)

N

Dally timeout QU][T ACK received or Death timeout

FIGURE 15. Quit state diagram.

5.2.5.3.3 NETBLT ABORT. An ABORT shall take place when an unrecoverable malfunction occurs.
Since the ABORT originates in the NETBLT layer, it may be sent at any time. The ABORT implies that
the NETBLT layer is malfunctioning, so no transmit reliability is expected, and the sender shall
immediately close its connection. Figure 16 illustrates this sequence.

ABORT received Internal malfunction

(Send ABORT)

FIGURE 16. Abort state diagram.

38

MIL-STD-2045-44500

5.2.5.3.4 Death timer timeout. When a NETBLT"s death timer expires, it shall close the connection
without sending further packets.

5.2.6 Protocol layering structure. NETBLT shall be implemented directly on top of the IP. It has been
assigned an official protocol number of 30 (decimal), which is OX1E (hexadecimal).

5.2.7 Packet formats. NETBLT packet formats used in TACO2 shall be in accordance with those
given in this section. NETBLT packets are divided into three categories, all of which share a common
12-byte packet header.

a.

There are three packet types that travel only from data sender to receiver; these contain the
high-acknowledged-sequence-numbers which the receiver uses for control message
transmission reliability. These are the NULL-ACK, DATA, and LDATA packets.

There is one packet type that travels only from receiver to sender. This is the CONTROL
packet. Each CONTROL packet can contain an arbitrary number of control messages
(GO, OK, or RESEND), each with its own sequence number.

There are seven packet types which can travel in either direction, although the TACO2
usage of NETBLT may limit their direction of travel. These packet types either have
special ways of insuring reliability, or are not transmitted reliably. They are the OPEN,
RESPONSE, REFUSED, QUIT, QUITACK, DONE, and ABORT packets. In the
TACO2 usage of NETBLT, the OPEN packet shall travel from sender to receiver; the
RESPONSE, REFUSED, and DONE packets shall travel from receiver to sender; and the
QUIT, QUITACK, and ABORT packets can be sent by both sending and receiving
NETBLTSs.

All packet headers shall be "longword-aligned," such as, all packet headers are a multiple of four bytes in
length and all four-byte fields start on a longword boundary. The Client String field shall be terminated
with at least one null byte, with extra null bytes added at the end to create a field that is a multiple of four
bytes long. All numeric values shall be coded as binary integers.

39

MIL-STD-2045-44500

5.2.7.1 OPEN (type 0) and RESPONSE (type 1).

0 1 2 3
01234567890123456789012345678901

Checksum Version Type
Length Local Port
Foreign Port Longword Alignment Padding

Connection Unique ID

Buffer Size

DATA packet size Burst Size
Burst Interval Death Timer Value
Reserved (MBZ) ‘C‘M Maximum # Outstanding Buffers

Client String...

Longword Alignment Padding

a. Checksum: To generate the checksum, the checksum field itself is cleared, the 16-bit
ones-complement sum is computed over the packet, and the ones complement of this sum is
placed in the checksum field.

b. Version: The NETBLT protocol version number

C. Type: The NETBLT packet type number (OPEN = 0, RESPONSE = 1)

d. Length: The total length (NETBLT header plus data, if present) of the NETBLT packet in
bytes

e. Local Port: The local NETBLT"s 16-bit port number

f. Foreign Port: The foreign NETBLT"s 16-bit port number

g. Connection UID: The 32 bit connection UID specified in 5.2.5.1.6.

h. Buffer size: Size in bytes of each NETBLT buffer (except the last)

i Data packet size: Length of each DATA packet in bytes
J. Burst Size: Number of DATA packets in a burst
K. Burst Interval: Transmit time in milliseconds of a single burst

l. Death timer: Packet sender's death timer value in seconds

40

MIL-STD-2045-44500

m. "C": The DATA packet data checksum flag (0 = do not checksum DATA packet data, 1
= do). Shall be 1 in TACO2.

n. "M": The transfer mode (0 = READ, 1 = WRITE). (see 5.2.9.2.5).

0. Maximum # Outstanding Buffers: Maximum number of buffers that can be transferred

before waiting for an OK message from the receiving NETBLT.

p. Client string: An arbitrary, null-terminated, longword-aligned string for use by NETBLT
clients. Contains the metamessage in TACO2.

(NOTE: the Reserved (MBZ) field may be used as the Connection Number field by the Header
Abbreviation sublayer (see 5.4.1)).

5.2.7.2 QUITACK (type 3), and DONE (type 10).

0 1 2 3
01 2345678901234567890123456789201
Checksum Version Type
Length Local Port
Foreign Port Longword Alignment Padding

5.2.7.3 QUIT (type 2), ABORT (type 4), and REFUSED (type 9) .

0 1 2 3
01234567890123456789012345678901
Checksum Version Type
Length Local Port
Foreign Port Longword Alignment Padding
Reason for QUIT/ABORT/REFUSE ...

Longword Alignment Padding

41

MIL-STD-2045-44500

5.2.7.4 DATA (type 5) and LDATA (type 6).

0 1 2 3
012345678901234567890123456789¢01
Checksum Version Type
Length Local Port
Foreign Port Longword Alignment Padding

Buffer Number

Last Buffer Touched

High Consecutive Seq Num Recvd Packet Number
Data Area Checksum Value Reserved (MBZ) L
New Burst Size New Burst Interval

Checksum: Checksum of the packet header only, including the Data Area Checksum Value.

Buffer number: A 32 bit unique number assigned to every buffer. Numbers are
monotonically increasing, starting with 1.

Last Buffer Touched: The number of the highest buffer transmitted so far.

High Consecutive Sequence Number Received: Highest control message sequence number
below which all control message sequence numbers received are consecutive.

Packet number: Monotonically increasing DATA packet identifier, starting with zero in
each buffer.

Data Area Checksum Value: Checksum of the DATA packet’s data. Algorithm used is the
same as that used to compute checksums of other NETBLT packets.

"L" is a bit that is set to 1 when the buffer that this DATA packet belongs to is the last
buffer in the transfer.

New Burst Size: Burst size as negotiated from value given by receiving NETBLT in OK
message.

New Burst Interval: Burst interval as negotiated from value given by receiving NETBLT in
OK message. Value is in milliseconds.

42

MIL-STD-2045-44500

5.2.7.5 NULL-ACK (type 7).

0 1 2 3

012345678901234567890123456789¢01
Checksum Version Type
Length Local Port

Foreign Port

Longword Alignment Padding

Last Buffer

Touched

High Consecutive Seq Num Recvd

New Burst Size

New Burst Interval

Longword Alignment Padding |L

a. Last Buffer Touched: The number of the highest buffer transmitted so far.
b. High Consecutive Sequence Number Received: Same as in DATA/LDATA packet.
C. New Burst Size: Burst size as negotiated (half- and full-duplex only) from value given by

receiving NETBLT in OK message.

d. New Burst Interval: Burst interval as negotiated (half- and full-duplex only) from value

given by receiving NETBLT in OK message. Value is in milliseconds.

e. "L" is a bit that is set to 1 when the buffer identified in the Last Buffer Touched field is the

last buffer in the transfer.

5.2.7.6 CONTROL (type 8).

0 1

0123456789 01234567890123456%789¢01

2 3

Checksum

Version Type

Length

Local Port

Foreign Port

Longword Alignment Padding

43

MIL-STD-2045-44500
Followed by any number of messages, each of which is longword aligned, with the following formats:

5.2.7.6.1 GO message (type 0).

0 1 2 3
012345678901234567890123456789¢01

Type Word Padding Sequence Number

Buffer Number

a. Type: Message type (GO = 0, OK = 1, RESEND = 2)

b. Sequence number: A 16-bit unique message number. Sequence numbers must be
monotonically increasing, starting with 1.

C. Buffer number: As in DATA/LDATA packet

5.2.7.6.2 OK message (type 1).

0 1 2 3
012345678901234567890123456789201

Type Word Padding Sequence Number

Buffer Number

New Offered Burst Size New Offered Burst Interval
Current Control Timer Value Longword Alignment Padding
a. New offered burst size: Burst size for subsequent buffer transfers, possibly based on

performance information for previous buffer transfers.

b. New offered burst interval: Burst interval for subsequent buffer transfers, possibly based on
performance information for previous buffer transfers. Interval is in milliseconds.

C. Current control timer value: Receiving NETBLT"s control timer value in milliseconds.

44

MIL-STD-2045-44500

5.2.7.6.3 RESEND message (type 2).

0 1 2 3
01234567890123456789012345678901

Type Word Padding Sequence Number

Buffer Number

Number of Missing Packets New Offered Burst Size

New Offered Burst Interval Longword Alignment Padding

Packet Number (2 bytes/packet)

Padding (if necessary)

a. Packet number: The 16-bit data packet identifier of a DATA packet, from the buffer
identified by Buffer Number, whose retransmission is requested. Multiple packet numbers
may occur in one RESEND message.

5.2.8 Required NETBLT components. TACO2 uses three modes of NETBLT operation; simplex,
half-duplex, and full-duplex. This section identifies the required components of NETBLT for each mode
of operation.

5.2.8.1 Simplex. The only NETBLT packet types used in the simplex case shall be the following:

a. OPEN

b. QUIT

c. ABORT

d. DATA

€. LDATA

f. NULL-ACK

5.2.8.1.1 Sender simplex operation. Operation of NETBLT in simplex send mode shall be as follows:
the OPEN message is sent; DATA, LDATA, and possibly NULL-ACK packets are sent; and the
connection is closed. Any packet may be sent more than once, for redundancy, but for all n, packets from
buffer(n - 1) shall not be sent after packets from buffer(n). QUIT and ABORT packets may be sent at any
time, and shall have the same effect. The Maximum Number of Outstanding Buffers (in the OPEN packet)
shall be set to 2.

45

MIL-STD-2045-44500

5.2.8.1.2 Receiver simplex operation. Operation of NETBLT in simplex receive mode shall be as
follows: when an OPEN packet is received, a connection is considered to be established. Packets received
shall be stored into NETBLT BUFFERS. The receiving NETBLT shall pass a buffer to the client when the
buffer is filled with correct packets or when good packets for a higher-numbered buffer are received. A
list of packets that are possibly bad, or missing, shall be passed to the client. When the last buffer (L flag
set in packet headers) has been passed to the client, or when the death timeout has expired, the receiving
connection shall be terminated.

5.2.8.1.2.1 Packet error handling. The receiving NETBLT shall discard redundant packets. In the
case of errors, the following rules shall apply at the receiving NETBLT:

a. A NETBLT packet with a bad checksum shall be discarded, unless it is a DATA or
LDATA packet.

b. A NETBLT DATA or LDATA packet, with a bad header checksum or data area
checksum, optionally may be saved but flagged as possibly bad. Reasonableness checks
shall be used to insure that good data is not affected by the possibly bad packet header or
data. If a good NETBLT packet (redundantly transmitted) is received with the same buffer
and packet number as a possibly bad one, the possibly bad packet shall be replaced with the
good one.

5.2.8.2 Half-duplex. The normal, full-duplex version of NETBLT shall operate across half-duplex
connections with the following modification: keepalive packets shall not be sent by the receiver while it is
in the process of receiving a packet. The burst timer and burst size counter shall be reset at the start of
each transmission period. If the Maximum Number of Outstanding Buffers (in the OPEN packet) is set to
1, the sending and receiving NETBLTSs will operate in lockstep. If the Maximum Number of Outstanding
Buffers is set to a value N greater than 1, the receiving NETBLT shall wait until N buffers have been
completely received or have had their data timers expire before sending a CONTROL packet. An
exception occurs when the last buffer is sent; when all buffers up to and including the last buffer have been
completely received or have had their data timers expire, the receiving NETBLT shall be permitted to send
its CONTROL packet. The last buffer is identified by the receiver as the buffer for which the "L" bit is set
in a DATA/LDATA packet, or as the Last Buffer Touched in a NULL-ACK packet with its "L" bit set to
1.

NOTE: Early implementations of TACO2 did not include the "L" bit in the NULL-ACK packet. These
implementations must set the Maximum Number of Outstanding Packets to 1; otherwise, loss of the entire
last buffer, due to communications error, would cause the receiver to stop operating.

5.2.8.3 Full-duplex. Across full-duplex connections the normal NETBLT as described in 5.2.1
through 5.2.6 shall be used.

5.2.9 Specific values for NETBLT. The following are comments on, or specific values for, various
NETBLT fields.

46

MIL-STD-2045-44500

5.2.9.1 Fields common to all packets.

5.2.9.1.1 Version. TACO2 shall use version 4 of NETBLT.

5.2.9.1.2 Local port and foreign port. The "well-known™ port, to which OPEN messages should be
directed, shall be port number 1. This signifies that a connection with the TACO2 NRTS is to be
established. Some other randomly-selected value shall be used for local port, this value shall be unique in
that if more than one NETBLT connection is supported by a single host interface, the port number shall not
be duplicated.

5.2.9.1.3 Longword alignment padding. The content of these fields shall be zeros.

5.2.9.2 OPEN and RESPONSE packets.

5.2.9.2.1 Connection UID. Connection UID may be any randomly-selected value, which shall be
unique in that if more than one NETBLT connection is supported by a single host interface, it shall not be
duplicated. More than one connection may be supported concurrently, to support multiplexing, but only
the ability to support a single connection is required.

5.2.9.2.2 Buffer size. A TACO2 implementation shall support a buffer size of at least 4096 data
bytes. In addition, it shall support any number of DATA/LDATA packets per buffer up to and including
32 packets; support for a larger number of packets per buffer is allowed but not required.

5.2.9.2.3 DATA packet size. A TACO2 implementation shall support a maximum DATA and
LDATA packet size of at least 512 data bytes. DATA packets as small as 64 data bytes shall be supported.
LDATA packets may be as small as one data byte, depending on the relationship between message, buffer,
and packet sizes.

5.2.9.2.4 Burst size and burst interval. In point-to-point connections, burst size and burst interval
ordinarily shall be set to produce the maximum data flow the connection and the hosts can support (such
as, [burst_size * bytes_per_packet * bits_per_byte*1000 / burst_interval] shall be approximately equal to
the apparent bits per second sent to the link). Alternatively, the burst interval may be set to zero, in which
case no internal flow control shall be imposed (see 5.2.3.5).

5.2.9.2.5 Direction. (Effectivity 4) Until the effectivity date, operation of TACO?2 is defined only for
"M" set to 1; that is, TACO2 allows only active sending and passive receiving. Following that date,
operation with "M" set to 0 is also permissible.

5.2.9.2.6 Checksumming. The value of "C" bit shall be 1; that is, TACO2 requires data checksums
on DATA/LDATA packets.

5.2.9.2.7 Maximum number of outstanding buffers. A TACO2 implementation shall be capable of
supporting at least two concurrently outstanding buffers.

47

MIL-STD-2045-44500

5.2.9.2.8 Client string. This field shall contain the metamessage, which is generated by the TACO2
NRTS. Both OPEN and RESPONSE messages shall include the metamessage; a mechanism for
negotiation of the value of some components is defined in the TACO2 NRTS.

5.2.9.3 QUIT packets.

5.2.9.3.1 Reason for QUIT/ABORT/REFUSE . The reason shall be an appropriate ASCII string up to
80 characters long, suitable for display to the recipient. The use of QUIT implies preemption or a
probable malfunction.

(NOTE: Strings used may include:

a. "Error: unknown return from setup upcall™

b. "Error: fatal application buffer setup error"

C. "Error: unknown return from flush upcall”

d. "Error: fatal application buffer flush error"

e. "Error: fatal buffer setup error”

f. "Error: unknown return from buffer flush upcall™)

5.2.9.4 ABORT packets.

5.2.9.4.1 Reason for QUIT/ABORT/REFUSE. The reason shall be an appropriate ASCII string up to
80 characters long, suitable for display to the recipient. The use of ABORT implies a serious malfunction.

(NOTE: Strings used may include:

a. "“fatal buffer create error”

b. "test request™

C. "received strange burst size"

d. "received strange burst interval™

e. "Control packet buffer overflow"

f. "no memory for outbound-packet source route"

g. "attempt to establish = 1 connection per port pair")

48

MIL-STD-2045-44500

5.2.9.5 REFUSED packets.

5.2.9.5.1 Reason for QUIT/ABORT/REFUSE . The reason shall be an appropriate ASCII string up to
80 characters long, suitable for display to the recipient. The use of REFUSED indicates that the
connection cannot be completed for some reason.

(NOTE: Strings used may include:
"no service listening on port x," where X is the unacceptable port number.)

5.2.9.6 DATA and LDATA packets.

5.2.9.6.1 Packet number. The first data packet in each buffer shall be numbered 0.

5.2.9.6.2 Data area checksum value. All TACO2 DATA and LDATA packets shall be checksummed.

5.2.9.7 Timer precision. Timer precision in NETBLT shall be no worse than 2100 milliseconds
(msec).

5.2.9.8 Open timer value. The open timer shall initially be set to no less than two seconds. In
half-duplex and full duplex, the value of the open timer shall be increased by two seconds after each
timeout.

5.2.9.9 Quit timer value. The quit timer shall be set to no less than five seconds.

5.2.9.10 Death timer value. The death timer should be set to no less than two minutes.

5.3 Network layer - IP.

5.3.1 Overview. The DOD IP forms the network layer of the TACOZ2 protocol suite. IP provides a
mechanism for transmitting blocks of data (datagrams) from sources to destinations, which are specified by
32-bit addresses. It is a "best-effort” mechanism, which provides no assurance that a datagram is delivered,
but takes appropriate steps when possible to move a datagram toward its destination. IP is specified in
Internet RFC 791, as amended by RFC 950 (IP Subnet Extension), RFC 919 (IP Broadcast Datagrams),
and RFC 922(IP Broadcast Datagrams with Subnets). It usually also includes the Internet Control Message
Protocol (ICMP), specified in RFC 792, which provides a mechanism for communicating control and error
information between hosts and other hosts or gateways. Although ICMP is an integral part of IP, it uses
the support of IP as if it (ICMP) were a higher level protocol. IP is also specified in MIL-STD-1777,
which formally specifies a protocol consistent with RFC 791.

5.3.1.1 1P augmentations. As used in TACO2, IP may be augmented by the revised IP Security
Option (RFC 1108), and by the Host Extensions for IP Multicasting (RFC 1112). These augmentations are
not required in this version of TACO2, but they may be necessary for operation in certain

49

MIL-STD-2045-44500

environments. TACO2 supports a limited form of multicasting by allowing simplex receivers to "listen in"
on simplex, half-duplex, or full-duplex transmissions. (Effectivity 5: later versions of TACO2 may
support acknowledged multicast).

5.3.2 Required IP components. Because TACO2 uses IP outside its normal internetworked
environment, some components of IP are unnecessary or inappropriate in some cases. This section
identifies the required components for each major case.

5.3.2.1 Simplex. Simplex transmission may be used to support point-to-point or broadcast
communication in TACO2. The Internet Header format shall be as specified in 5.3.3. The following
fields shall be correctly filled in and interpreted for simplex operation:

a. Version

b. Internet Header Length

C. Total Length

d. Fragment Offset (must be 0)
e. Protocol (30 for NETBLT)
f. Header Checksum

g. Source Address

h. Destination Address

i IP Security Option, if required
The remaining fields shall be disregarded by a receiver in simplex operation, but shall be provided by a

transmitter for the sake of consistency. Datagrams shall not be fragmented. Subnetting support is not
required. ICMP shall not be used in simplex communications.

50

MIL-STD-2045-44500

5.3.2.2 Point-to-point duplex. Point-to-point duplex communications in TACO2 may be half-duplex
or full-duplex. The Internet Header format shall be as specified in 5.3.3. The following fields shall be
correctly filled in and interpreted for duplex operation:

a. Version

b. Internet Header Length

C. Total Length

d. Fragment Offset (must be 0)
e. Protocol (30 for NETBLT)
f. Header Checksum

g. Source Address

h. Destination Address

i IP Security Option, if required

The remaining fields are not meaningful for point-to-point operation, but shall be provided by a transmitter
for the sake of consistency. Datagrams shall not be fragmented. Subnetting support is not required.
ICMP shall be used in point-to-point communications. However, only the following ICMP messages shall
be required in this environment:

J. Parameter Problem
K. Echo
l. Echo Reply

Other ICMP messages are optional in point-to-point operation of TACOZ2, and shall not affect the operation
of a receiver that does not implement them.

51

MIL-STD-2045-44500

5.3.3 IP_Message format for TACOZ2. Figure 17 is a summary of the contents of the internet header.

0 1 2 3
01234567890123456789012345678901
Version IHL Type of Service Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum

Source Address

Destination Address

Options (if any)

Padding (if any)

FIGURE 17. Internet datagram header.

a. Version: 4 bits
The Version field indicates the format of the internet header. This value shall be 4.

b. IHL: 4 bits
Internet Header Length (IHL) is the length of the internet header in 32-bit words, and thus
points to the beginning of the data. Note that the minimum value for a correct header
is 5.

C. Type of Service: 8 bits
Type of service choices are not meaningful in point-to-point and simplex operation. In
TACO2, this field shall normally have value 0 (routine precedence, normal delay, normal
throughput, normal reliability).

d. Total Length: 16 bits
Total Length is the length of the datagram, measured in octets, including internet header
and data. All hosts shall be prepared to accept datagrams of up to 576 octets.

e. Identification: 16 bits
An identifying value assigned by the sender; may be ignored in TACO2.

f. Flags: 3 bits, Fragment Offset: 13 bits

TACO2 packets shall not be fragmented. A packet size shall be used that makes
fragmentation unnecessary.

52

MIL-STD-2045-44500

g. Time to Live: 8 bits
May be ignored in TACO2. This field indicates the maximum time the datagram is allowed
to remain in an internet system. |If this field contains the value zero, the datagram shall not
be forwarded to another node.

h. Protocol: 8 bits
This field indicates the next level protocol used in the data portion of the internet datagram.
The next higher level protocol used in TACOZ2 shall be NETBLT, which has been assigned
number 30 (decimal). ICMP is protocol number 1.

i. Header Checksum: 16 bits
A checksum on the header only. The checksum field's value shall be the 16-bit one's
complement of the one's complement sum of all 16-bit words in the header. For purposes
of computing the checksum, the value of the checksum field is zero. A received datagram
with an incorrect header checksum shall be discarded.

J. Source Address: 32 bits
The 32-bit IP-style address of the datagram®s source. For point-to-point use, this address
may be assigned arbitrarily, but shall be consistent with normal IP usage; in particular, the
host portion of the address shall be neither all 1°s nor all 0*s (binary).

K. Destination Address: 32 bits
The 32-bit IP-style address of the datagram®s destination. For point-to-point use, this
address may be assigned arbitrarily, but shall be consistent with normal IP usage; in
particular, the host portion of the address shall not be all 0°s, and a host portion of all 1's
shall be interpreted as a broadcast address. Multicast addressing per RFC 1112 may be
incorporated, but is not required in this version of TACO?2.

l. Options: variable
The options are optional in each datagram. If the options do not end on a 32-bit boundary,
the internet header shall be filled out with octets of zeros. The first of these shall be
interpreted as the end-of-options option, and the remainder as internet header padding. For
the purpose of TACO2 end-points, options other than security should not be generated, but
shall be tolerated if received.

5.3.4 ICMP.

5.3.4.1 Overview. Occasionally a destination host will communicate with a source host, for example
to report an error in datagram processing. For such purposes the Internet Control Message Protocol
(ICMP), shall be used. ICMP uses the basic support of IP as if it were a higher level protocol, however,
ICMP is actually an integral part of IP. ICMP messages typically report errors in the processing of
datagrams. To avoid the infinite loop of messages about messages, no ICMP messages shall be sent about
ICMP messages.

53

MIL-STD-2045-44500

5.3.4.2 ICMP in TACO2. The message formats described here are for the ICMP messages required
for point-to-point duplex communications with TACO?2 (see 5.3.2.2).

5.3.4.3 ICMP message formats. ICMP messages are sent using the basic IP header. The first octet of
the data portion of the datagram is an ICMP type field; the value of this field determines the format of the
remaining data. Any field labeled "unused" is reserved for later extensions and shall be zero when sent,
but receivers shall not use these fields (except to include them in the checksum). The values of the
following internet header fields shall be as described in 5.3.3:

a. Version

b. IHL

C. Type of Service
d. Total Length

e. Identification

f. Flags

g. Fragment Offset
h. Time to Live

i Header Checksum
J. Source Address
K. Destination Address
The Protocol field shall have value 1 for ICMP.

5.3.4.3.1 Parameter problem message.

0 1 2 3
01234567890123456789012345678901
Type Code Checksum
Pointer Unused

Internet Header + 64 bits of Original Data Datagram

54

MIL-STD-2045-44500
5.3.4.3.1.1 P fields.

a. Destination Address: The source network and address from the original datagram's data.

5.3.4.3.1.2 ICMP fields.

a. Type: 12
b. Code: 0, indicating that the pointer field indicates the error.
C. Checksum: The checksum shall be the 16-bit one's complement of the one*s complement

sum of the ICMP message starting with the ICMP Type. For computing the checksum ,
the checksum field shall be zero.

d. Pointer: identifies the octet where an error was detected.

e. Internet Header + 64 bits of Data Datagram: The internet header plus the first 64 bits of
the original datagram’s data. This data may be used by the host to match the message to
the appropriate process.

If the host processing a datagram finds a problem with the header parameters, so that it cannot complete
processing the datagram, it shall discard the datagram. The host also may notify the source host via the
parameter problem message. This message shall be sent only if the error caused the datagram to be
discarded. The pointer shall identify the octet of the original datagram®s header where the error was
detected (it may be in the middle of an option). For example, 1 indicates something is wrong with the
Type of Service, and (if there are options present) 20 indicates something is wrong with the type code of
the first option.

5.3.4.3.2 Echo or echo reply message.

0 1 2 3
01234567890123456789012345678901
Type Code Checksum
Identifier Sequence Number
Data...

5.3.4.3.2.1 IP fields.
a. Addresses: The address of the source in an echo message shall be the destination of the

echo reply message. To form an echo reply message, the source and destination addresses
are simply reversed, the type code changed to 0, and the checksum recomputed.

55

MIL-STD-2045-44500

5.3.4.3.2.2 ICMP fields.

a. Type: 8, indicating echo message, or 0 for echo reply message.
b. Code: 0
C. Checksum: The checksum shall be the 16-bit one's complement of the one*s complement

sum of the ICMP message starting with the ICMP Type. For computing the checksum ,
the checksum field shall be zero. If the total length is odd, the received data is padded with
one octet of zeros for computing the checksum.

d. Identifier: an identifier to aid in matching echoes and replies, may be zero.

e. Sequence Number: a sequence number to aid in matching echoes and replies, may be zero.
The data received in the echo message shall be returned in the echo reply message. The
identifier and sequence number may be used by the echo sender to help match the replies
with the echo requests. For example, the identifier might be used like a port in
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) to identify a
session, and the sequence number might be incremented on each echo request sent. The
echoer returns these same values in the echo reply.

5.4 Data link layer. The Data Link layer in TACO?2 is divided into three sublayers: Header
Abbreviation, FEC, and Framing. (Effectivity 6: a Medium Access Control Layer, just below the Framing
Sublayer, is under consideration.)

5.4.1 Header abbreviation sublayer. TACO?2 provides a mechanism for header abbreviation across
point-to-point links. Using the header abbreviation sublayer is optional; its inclusion in any compliant
implementation of TACO2 shall be mandatory (Effectivity 3). The normal size of a combined NETBLT/IP
header for a DATA or LDATA packet is 52 bytes. The overhead due to this header size is significant
when small packets are used. TACO2 therefore provides an option for DATA/LDATA packet header
abbreviation that reduces the size of headers to eight bytes. The abbreviation mechanism takes advantage of
the fact that some header fields are generous in size, and others rarely or never change. A header
abbreviated by the sender, in conjunction with state information stored by the receiver, provides all the
information necessary to reconstruct the original header at the receiver.

56

MIL-STD-2045-44500

5.4.1.1 Abbreviated header format. The format of a TACO2 packet with abbreviated header is
illustrated on figure 18.

0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
1 0 | LP |LB HiConSegNo Packet Number
Buffer Number Last Buffer Touched
Connection No Packet length
Checksum
Data
Data

FIGURE 18. Abbreviated header TACO2 packet .

The first two bits of the packet are 10. The remaining fields are defined as follows:

a.

LP: if this bit is 1, this is the last packet in a buffer (such as, a abbreviated LDATA
packet).

LB: if this bit is 1, the buffer that this packet belongs to is the last buffer in a transfer.

HiConSeqNo: the low-order four bits of the High Consecutive Sequence Number field
from the DATA/LDATA packet.

Packet Number: the low-order eight bits of the Packet Number field from the
DATA/LDATA packet.

Buffer Number: the low-order eight bits of the Buffer Number field from the
DATA/LDATA packet.

Last Buffer Touched: the low-order eight bits of the Last Buffer Touched field from the
DATA/LDATA packet.

Connection No: the number of the connection to which this packet belongs. In TACO2
implementations that support only one connection at a time, this field shall be 0.

57

MIL-STD-2045-44500
h. Packet Length: the total length (header plus data) of the abbreviated packet in bytes.

i. Checksum: to generate the checksum, the checksum field itself is cleared, the 16-bit
ones-complement sum is computed over the abbreviated packet, and the ones complement of
this sum is placed in the checksum field (see 5.2.4 for a discussion of checksumming).

j- Data: the Data portion of the original DATA/LDATA packet.

5.4.1.2 Multiple-connection operation with abbreviated headers. TACO2 provides two compatible
mechanisms for operation with abbreviated headers. The first, described in this section, allows multiple
connections to operate concurrently across a single point-to-point link. The second, described in 5.4.1.3,
allows only a single connection at a time across a point-to-point link.

5.4.1.2.1 Sender operation with abbreviated headers. A sender shall provide the option of operation with or
without abbreviated headers. If operation with abbreviated headers is selected, the sender shall abbreviate
DATA/LDATA packets for an open connection.

5.4.1.2.1.1 Sender connection state table. A sender shall maintain the following information about each
connection. The following description, in terms of indexing state table entries, is not intended to dictate an
implementation. It describes operation in terms of a connection state table, with space for 16 entries. Each
entry includes fields for the following:

a. Source IP address.

b. Destination IP address.
C. Local Port number.

d. Foreign Port number.
e. Connection UID.

f. Burst Size.

g. Burst Interval.

The index of the entry with matching field values shall be used as the abbreviated packet's Connection Number,
as explained below.

5.4.1.2.1.2 Sender processing of outgoing OPEN packet. When a sender with header abbreviation turned
on detects a NETBLT OPEN packet, it shall examine its connection state table for an entry with the same IP
addresses, Local Port number, and Connection UID. If no such entry is found, it shall establish a table entry
with those values, using the least recently used entry if no unused entries are available. (Note that reuse of the
state table entry for an open connection will make it impossible to

58

MIL-STD-2045-44500

abbreviate any more packets for that connection.) The index of the entry with the same IP addresses,
Local Port number, and Connection UID shall be used as the connection number. The connection number
shall be inserted into the high-order four bits of the Reserved field (referred to in the following sections as
the Connection Number field for OPEN and RESPONSE packets) in the OPEN packet, and the packet sent
on to the next lower layer. The modified OPEN packet is shown below.

0 1 2 3
01234567890123456%7Y890123456789°01

Checksum Version Type
Length Local Port
Foreign Port Longword Alignment Padding

Connection Unique ID

Buffer Size

DATA packet size Burst Size

Burst Interval Death Timer Value

Conn # Reserved (MBZ) C M| Maximum # Outstanding Buffers

Client String...

Longword Alignment Padding

5.4.1.2.1.3 Sender processing of incoming RESPONSE packet. When a sender with header
abbreviation turned on detects a NETBLT RESPONSE packet, it shall examine the entry in its connection
state table identified by the value of the Connection Number field for IP source and destination addresses
equal to the packet’s destination and source addresses, Local Port number equal to the packet's Foreign
Port number, and the same Connection UID. If the values match, the Local Port number, burst size, and
burst interval in the RESPONSE packet shall replace the Foreign Port number, burst size, and burst
interval in the table entry. The packet shall be sent on to the IP layer.

5.4.1.2.1.4 Sender processing of outgoing DATA/LDATA packet. When a sender with header
abbreviation turned on detects a NETBLT DATA/LDATA packet, it shall examine the connection state
table for an entry with the same IP addresses, port numbers, Burst Size, and Burst Interval. If such an
entry is found, it shall abbreviate the packet using the format defined in 5.4.1.1, using the index of the
entry as the Connection Number, and send it on to the next lower layer. If no such entry is found, the
packet shall be sent on unchanged. If a connection state table entry is found with the same IP addresses
and port numbers, the burst size and burst interval values in the packet shall replace those in the table
entry.

59

MIL-STD-2045-44500

5.4.1.2.2 Receiver operation with abbreviated headers. The receiver shall check the high-order two
bits of each received packet to determine the packet type. If the bits are 01, the packet shall be passed
unchanged to the IP layer. If the bits are 10, the packet shall be reconstructed by the Header Abbreviation
sublayer; the Header Abbreviation sublayer shall pass the reconstructed packet to the IP layer.

5.4.1.2.2.1 Receiver connection state table. The receiver shall maintain a connection state table, with
space for 16 entries, containing information needed for correct reconstruction of the reconstructed packet.
Each entry shall include fields for the following:

a. Source IP address.

b. Destination IP address.
C. Local Port number.

d. Foreign Port number.
e. Connection UID.

f. Burst Size.

g. Burst Interval.

h. Buffer Number.

i. Last Buffer Touched.
J. High Consecutive Sequence Number Received.

The abbreviated packet's Connection Number shall be used as an index into the connection state table, as
explained below.

5.4.1.2.2.2 Receiver processing of incoming OPEN packet. When a receiver detects a NETBLT
OPEN packet, it shall fill in the IP address, Local Port number, and Connection UID fields in the
connection state table entry indexed by the packet’s Connection Number with the values in the packet.

5.4.1.2.2.3 Receiver processing of outgoing RESPONSE packet . When a receiver detects a NETBLT
RESPONSE packet, it shall examine its connection state table for an entry with IP source and destination
addresses equal to the packet's destination and source addresses, Local Port number equal to the packet’s
Foreign Port number, and the same Connection UID. If the values match, the Local Port number, burst
size, and burst interval in the RESPONSE packet shall replace the Foreign Port number, burst size, and
burst interval in the table entry, and the Connection Number field in the RESPONSE packet shall be filled
in with the index of the matching connection state table entry.

60

MIL-STD-2045-44500

5.4.1.2.2.4 Receiver processing of incoming abbreviated header packet. When a receiver detects a
packet with abbreviated header, it shall use the values in the connection state table entry indexed by the
Connection Number to determine the IP addresses, port numbers, burst size, and burst interval in the
reconstructed packet. The remaining IP header fields shall be filled in accordance with 5.3.3. The
NETBLT Buffer Number, Last Buffer Touched, and High Consecutive Sequence Number Received fields
shall be filled in with values computed by combining the abbreviated header value of the corresponding
field and the receiver's state table value. For the Last Buffer Touched and High Consecutive Sequence
Number Received fields, the computed value shall contain the abbreviated header value for the low-order
portion, and the smallest value such that the result is no less than the old state table value for the high-order
portion. For the Buffer Number field, the computed value shall use the abbreviated header value for the
low-order portion, and a value that causes minimal change between the old state table value and the new
computed value for the high-order portion. The state table value shall be changed to correspond to the new
computed value. The NETBLT Packet Number field shall be filled in with the abbreviated header Packet
Number field, padded with zeros on the left. The NETBLT "L" bit shall be set according to the "LB™" bit
in the abbreviated header, and the NETBLT Type field shall be DATA or LDATA according to the "LP"
bit in the abbreviated header. The remaining NETBLT fields shall be filled in accordance with 5.2.

5.4.1.2.2.5 Receiver processing of incoming DATA/LDATA packet. When a receiver detects a
NETBLT DATA/LDATA packet, it shall examine the connection state table for an entry with the same IP
addresses and port numbers. If such an entry is found, it shall replace the burst size and burst interval
fields in that entry with the values from the DATA/LDATA packet. The packet shall be sent to the IP layer
unchanged.

5.4.1.3 Single-connection operation with abbreviated headers . In single-connection operation of
TACO2 with abbreviated headers, the connection number shall be ignored. Operation shall be as described
in 5.4.1.2, except that the connection state table shall contain only one entry, with the index zero.
However, since TACO2 does not mandate interlayer interfaces, it may be implemented in a simpler way,
as described in the following.

5.4.1.3.1 Single-connection sender operation with abbreviated headers . The sender shall provide the
option of operation with or without abbreviated headers. If operation with abbreviated headers is selected,
the sender shall abbreviate DATA/LDATA. The sender shall maintain a set of connection state variables
for the following:

a. Burst Size.
b. Burst Interval.
5.4.1.3.1.1 Sender processing of outgoing OPEN packet . In single-connection operation, the sender

with header abbreviation turned on shall store the Burst Size and Burst Interval in the connection state
variables and pass the OPEN packet unchanged to the next lower layer.

61

MIL-STD-2045-44500

5.4.1.3.1.2 Sender processing of incoming RESPONSE packet. In single-connection operation, the sender
with header abbreviation turned on shall store the Burst Size and Burst Interval in the connection state variables
and pass RESPONSE packet unchanged to the next higher layer.

5.4.1.3.1.3 Sender processing of outgoing DATA and LDATA packets. In single-connection operation, the
sender with header abbreviation turned on shall compare the DATA/LDATA packet's Burst Size and Burst
Interval with the values stored in the connection state variables. If both match, it shall abbreviate the packet
using the format defined in 5.4.1.1, using zero as the Connection Number. If either variable does not match,
the DATA/LDATA packet shall be sent on unchanged, and the burst size and burst interval values in the packet
shall replace those in the table entry.

5.4.1.3.2 Single-connection receiver operation with abbreviated headers. The receiver shall check the
high-order two bits of each received packet to determine the packet type. If the bits are 01, the packet shall be
passed unchanged to the IP layer. If the bits are 10, the packet shall be reconstructed by the Header
Abbreviation sublayer ; the Header Abbreviation sublayer shall pass the reconstructed packet to the IP layer.
The receiver shall maintain a set of connection state variables, corresponding in size to those in a
DATA/LDATA packet, for the following:

a. Buffer Number.

b. Last Buffer Touched.

c. High Consecutive Sequence Number Received.
d. Burst Size.

e. Burst Interval.

f. Local Port.

g. Foreign Port.

5.4.1.3.2.1 Receiver processing of incoming OPEN packet. In single-connection operation, upon detection
of an OPEN packet, the receiver shall set the first three connection state variables to zero, store the Burst Size,
Burst Interval, Local Port, and Foreign Port, and pass the OPEN packet unchanged to the IP layer.

5.4.1.3.2.2 Receiver processing of outgoing RESPONSE packets. In single-connection operation, the
receiver shall store the Burst Size, Burst Interval, Local Port in the Foreign Port variable, and Foreign Port in
the Local Port variable, and pass the packet unchanged to the next lower layer.

5.4.1.3.2.3 Receiver processing of incoming abbreviated-header packets. In single-connection operation,
the receiver shall reconstruct a DATA/LDATA packet from the incoming abbreviated-header packet . The
NETBLT Buffer Number, Last Buffer Touched, and High Consecutive Sequence Number

62

MIL-STD-2045-44500

Received fields shall be filled in with values computed by combining the abbreviated header value of the
corresponding field and the receiver's connection state variable value. For the Last Buffer Touched and
High Consecutive Sequence Number Received fields, the computed value shall contain the abbreviated
header value for the low-order portion, and the smallest value such that the result is no less than the old
connection state variable value for the high-order portion. For the Buffer Number field, the computed
value shall use the abbreviated header value for the low-order portion, and a value that causes minimal
change between the old connection state variable value and the new computed value for the high-order
portion. The connection state variable value shall be changed to correspond to the new computed value.
The NETBLT Packet Number field shall be filled in with the abbreviated header Packet Number field,
padded with zeros on the left. The NETBLT "L" bit shall be set according to the "LB" bit in the
abbreviated header, and the NETBLT Type field shall be DATA or LDATA according to the "LP" bit in
the abbreviated header. Burst Size and Burst Interval shall be filled in according to the variable values.
The remaining NETBLT fields shall be filled in accordance with 5.2. The reconstructed NETBLT packet
shall be passed directly to the NETBLT layer (bypassing the IP layer) for normal processing.

5.4.2 EEC sublayer. Using the FEC sublayer is optional; the inclusion of FEC-I in any compliant
implementation of TACO?2 is mandatory.

5.4.2.1 EEC-I code. The FEC-I encoding process takes each IP datagram to be transmitted, adds
Reed-Solomon redundancy, and passes the encoded datagram to the link layer for encapsulation, generally
as an HDLC frame as specified in 5.4.3.1. As a result, the HDLC implementation shall (TBR) allow
received packets to be processed by the FEC sublayer even if the HDLC checksum is in error. The
encoded datagram also may be encapsulated as a SLIP frame, as specified in 5.4.3.2. If the unencoded
datagram contains K bytes where K is not greater than 152, the encoded datagram contains a single
Reed-Solomon codeword containing K + 10 bytes. For purposes of Reed-Solomon code definition, these
bytes are numbered from 0 to K + 9 as shown on figure 19 (where the left end of the figure represents the
beginning of the datagram if viewed in time-sequence).

K+9 10 0 9
Message Bytes Reed—Solomon Check
Mi, 10 <1 < K+9 Bytes
Cj,0<j<9

FIGURE 19. EEC-I format.

63

MIL-STD-2045-44500

The FEC-I code uses arithmetic in the Galois field GF(256), as specified in the standard ISO 9171 for
5.25" WORM disk coding. This field has 256 elements, which are represented by 8-bit symbols (*octets"
or simply "bytes"), using the generator polynomial x® + x> + x® + x?> + 1. The primitive element a has
hexadecimal value 0x02. The Reed-Solomon check bytes Cj are defined by the following:

K+9 M.

c. - Y % j-0.9

j ai_g]

i=10

5.4.2.1.1 Correction capability. Each codeword as defined in 5.4.2.1 has distance 11 and is fully
correctable with up to five independent byte-errors. FEC-I can fully correct all patterns of five or fewer
erroneous bytes in any codeword. Note that the content and sequence of the message bytes M ; remains
unchanged by the encoding process.

5.4.2.1.2 Long datagrams. If the length of the datagram to be encoded is greater than 152 bytes
but does not exceed 752 bytes, encoding is performed by including up to five separate concatenated
Reed-Solomon codewords in the encoded datagram. The maximum encoded length is 802 bytes. As an
example, figure 20 shows how a datagram with an unencoded length of 450 bytes would be encoded,
giving a datagram 480 bytes long.

152 152 146
message bytes message bytes message bytes

S e

— — —

10 10 10
check bytes check bytes check bytes

FIGURE 20. Encoding a 450 byte packet.

As shown on figure 20, only the final codeword in a multicodeword encoded datagram may be truncated to
fewer than 152 message bytes. The time sequence of the message bytes is unchanged by the encoding
process. FEC-I encoding is presently not specified for datagrams whose unencoded length is greater than
752 bytes. Should a FEC-I encoder be presented with such a datagram, the correct action is to transmit it
without any encoding.

64

MIL-STD-2045-44500

5.4.2.2 Required modes of FEC. The following mandatory FEC modes (see 5.4.2.2.1 and 5.4.2.2.2)
shall be supplied by Secondary Imagery Dissemination (SID) devices. Each of these three modes shall be
able to bypass the FEC capability contained in any datalink hardware external to the SID device. The
operational selection of the three modes (see 5.4.2.2.1, 5.4.2.2.2, and 5.4.2.2.3) shall be controllable
using the SIDS user interface.

5.4.2.2.1 Uncoded. The SLIP and/or HDLC encapsulated datalink is provided with no FEC coding
applied by the SIDS system.

5.4.2.2.2 FEC-l. FEC-1 is applied to a SLIP and/or HDLC encapsulated datalink as described in
5.4.2.1.

5.4.2.2.3 EEC-Il. FEC-II is applied to a SLIP and/or HDLC encapsulated datalink as described in
appendix C (Effectivity 2).

5.4.2.3 Bit error ratio testing (BERT).

5.4.2.3.1 Bit error ratio test facility. The Data Link Layer shall provide the upper protocol layers
with a Bit Error Ratio Test facility. The services provided to the upper layer are:

a. The ability to send a group of BERT frames over the link.

b. The ability to notify that a group of BERT frames has been received, along with the
following information: number of frames successfully received; the IP address of the
station originating the BERT test; and whether the received frames form a standard BERT
test or a short BERT test as defined below.

5.4.2.3.2 BERT frame format. The BERT frame may be encapsulated by either the HDLC protocol
or the SLIP protocol. If encapsulated by HDLC, the BERT frame shall contain 12 data bytes followed by
the 2-byte frame check sequence as defined by the HDLC protocol. If encapsulated by SLIP, the BERT
frame shall contain only the 12 data bytes. In either case, the 12 data bytes, numbered 0 through 11 in
time sequence, shall be formatted as shown on figure 21.

65

MIL-STD-2045-44500

byte 0 byte 1 byte 2
A

A A
4 hvd Ve A

11111111 000011XO

M L Originating Station
q q IP address MS byte
B B

byte 3 byte 4 byte 4

4 Y4 Y4 A

IP address IP address IP address LS byte
byte 6 byte 7 byte 8

4 Y4 N N

Same as byte 2 Same as byte 3 Same as byte 4

byte 9 byte 10 byte 11

TN T N T

000000O0O 000000O0CO

Same as byte 5

CRC CRC

FIGURE 21. BERT frame format.

66

MIL-STD-2045-44500

5.4.2.3.3 Standard BERT test format. The standard BERT test shall consist of sending 1,000 (one
thousand) identical BERT frames, each with the hexadecimal character "0OxOE" in byte number 1.

5.4.2.3.4 Short BERT test format. The short BERT test shall consist of sending 200 (two hundred)
identical BERT frames, each with the hexadecimal character "0x0C" in byte number 1.

5.4.3 Framing sublayer. Two Framing sublayers are included in the TACO2 protocol stack: HDLC
Framing for synchronous operation, and SLIP for asynchronous operation. HDLC Framing capability
shall be available in any compliant TACO2 implementation; the implementation of SLIP is optional.

5.4.3.1 HDLC framing.

5.4.3.1.1 Overview. The synchronous data link layer for TACO2 uses HDLC framing as a standard
transparent encapsulation for the IP packets supplied by the next higher protocol layer. TACO2 uses only
the frame structure, and not the control procedures, of HDLC, the ISO High-level Data Link Control. The
frame structure used is compatible with 1ISO 3309-1979 and with the International Telegraph and Telephone
Consultative Committee (CCITT) Recommendation X.25, which is based on HDLC.

5.4.3.1.2 Required HDLC components. The standard HDLC frame structure is shown below. The
fields shall be transmitted from left to right.

0 1 2 3

012345678901234567890123456789201
Flag Address Control Information...

...Information Frame Check Sequence Flag

5.4.3.1.2.1 Flag sequence. The flag sequence shall be a single octet that indicates the beginning or
end of a frame. The flag sequence consists of the binary sequence 01111110 (hexadecimal OX7E). A flag
that terminates one frame may also signal the beginning of the next frame, which allows back-to-back
frames to be separated by a single flag.

5.4.3.1.2.2 Address field. The address field shall be a single octet. It shall contain OxFF if no FEC
coding is applied by the FEC sublayer, and shall contain 0x33 if FEC-1 coding, as specified in 5.4.2.1, is
applied.

5.4.3.1.2.3 Control field. The control field shall be a single octet that indicates the type of frame.

The control field for TACO2 shall contain the binary sequence 00000011 (hexadecimal 0x03), the
Unnumbered Information (Ul) command with the Poll/Final (P/F) bit set to zero.

67

MIL-STD-2045-44500

5.4.3.1.2.4 Information field. The information field contains data for the next higher protocol layer,
which for TACO2 shall be an IP packet. The end of the information field is found by locating the closing
flag and allowing two octets for the Frame Check Sequence field. The Information field shall be an integer
number of octets in length.

5.4.3.1.2.5 Frame check sequence field. The Frame Check Sequence (FCS) field is two octets. It
shall be calculated over all bits of the address, control, and information fields, not including any bits
inserted for transparency. This does not include the flag sequences or the FCS field. The polynomial
used is x**+ x2+x°+1. This is the standard CCITT Cyclic Redundancy Check (CRC) polynomial.

5.4.3.1.3 HDLC procedures.

5.4.3.1.3.1 Order of bit transmission. The information field shall be transmitted with the high-order
(most significant) octet first. Individual octets of all fields except the FCS, but including the Information
field, shall be transmitted low-order bit first. The FCS shall be transmitted with the coefficient of the
highest term first.

5.4.3.1.3.2 Transparency. Bit-stuffing is used to distinguish the flag sequence from other fields. The
transmitter shall insert a O bit after all non-flag sequences of 5 contiguous 1 bits. The receiver shall discard
a 0 bit received after five contiguous 1 bits. The reception of a sixth 1 bit indicates a flag when followed
by a zero bit, or an abort when followed by a seventh 1 bit.

5.4.3.1.3.3 Invalid frames. In duplex mode with the optional FEC sublayer not operating, invalid
frames shall be discarded. An invalid frame is one that is too short, too long, contains a nonintegral
number of octets, contains an unrecognized address or control field, has an invalid FCS, or was aborted.
In simplex mode and in duplex mode with the FEC sublayer operating, a frame with an invalid FCS that is
otherwise valid may be passed on to the FEC sublayer. A frame of less than four octets (excluding flags)
is too short; a TACO2 implementation shall support a maximum frame size of at least 576 information
octets.

5.4.3.1.3.4 Frame abortion. A frame may be aborted by transmitting at least 7 contiguous 1 bits.

5.4.3.1.3.5 Inter-frame time fill. Inter-frame time fill, when required within a period of continuous
transmission, shall be accomplished by transmitting flag sequences. The transmitted level for the interval
between periods of continuous transmission shall be in accordance with the requirements of the attached
cryptographic device, if any.

5.4.3.2 SLIP. Devices using asynchronous communications shall use SLIP.
5.4.3.2.1 Overview. The asynchronous data link layer for TACO2 uses SLIP as a standard

transparent encapsulation for the IP packets supplied by the next higher protocol layer. SLIP defines a
sequence of characters that frame packets on a serial line in a simple and consistent manner.

68

MIL-STD-2045-44500

5.4.3.2.2 Protocol. The SLIP protocol defines two special characters: END and ESC. END is
hexadecimal 0xCO (decimal 192) and ESC is hexadecimal OxDB (decimal 219), not to be confused with the
ASCII ESC character. For this discussion, ESC will indicate the SLIP ESC character. To send a packet, a
SLIP host shall send an END character followed by the data in the packet. If a data byte is the same code
as the END character, a two-byte sequence of ESC and hexadecimal 0xDC (decimal 220) shall be sent
instead. If a data byte is the same code as the ESC character, a two byte sequence of ESC and hexadecimal
0xDD (decimal 221) shall be sent instead. When the last byte in the packet has been sent, an END
character shall be transmitted.

5.4.3.2.3 Required SLIP components. The only required SLIP components are the mechanisms for
indicating End of Packet and for byte-stuffing.

5.4.3.2.4 Specific values for SLIP.

5.4.3.2.4.1 Order of bit transmission. Information shall be transmitted with the high-order (most
significant) octet first. Individual octets shall be transferred low-order bit first. This is the standard
asynchronous transmission order.

5.4.3.2.4.2 Transparency. Byte-stuffing shall be used to distinguish the End of Packet character from
the same value when it occurs in the information being transmitted.

5.4.3.2.4.3 Invalid frames. The only invalid frames in SLIP shall be ones that are too long. The
receiver shall be prepared to accept frames of at least 576 octets (not including framing and byte-stuffing
characters), and preferably of at least 2048 octets. Frames that are too long may be discarded or truncated.

5.4.3.2.4.4 Inter-frame gap. Frames may be separated by a single END character. Any inter-frame
gap shall consist of continuous marks or continuous END characters.

5.5 DTE-DCE interfaces. TACO2 does not specify a single standard Data Terminal Equipment - Data
Circuit-terminating Equipment (DTE-DCE) interface. Detailed implementation information for certain
communications environments (such as, recommended parameter values, interfaces, and settings/strappings
for KY-57, KG-84A/C, KY-68 and STU-III cryptographic devices) is provided by the JIEO TIS listed in
section 2. Additional TIS documents will be prepared for other communications environments. TACO2
implementations shall provide DTE-DCE interfaces capable of conforming to the TIS recommendations for
each cryptographic device or communications environment identified by the procuring activity.

69/70

MIL-STD-2045-44500

6. NOTES
(This section contains general or explanatory information that may be helpful but is not mandatory).

6.1 Example TACO2 packet. Figure 22 is an example of a TACO2 data packet, including IP and
NETBLT headers, with values shown in decimal.

8123456?8951234567895123456?8931
Ver= 4 | [HL= 5 | Type of Service Total Length = 70

Identification = 4 Flg=0 Fragment Offset = 0
Time to Live=255| Protocol = 30 Header Checksum

Source Address = 128.83.8.2

Destination Address = 129.83.2.81

Checksum Version = 4 Type = 6
Length = 50 Local Port = 21835
Foreign Port = 1 Longword Alignment Padding = 0

Buffer Number = 1

Last Buffer Touched = 1

High Cons Seq Num Revd = 0 Packet Number = 0
Data Area Checksum Value Reserved (MBZ) 1
New Burst Size = 7 New Burst Interval = 7000
T h e (Space)
M I T R
E (Space) C o
r P . (Cr)
(L) (Ctrl-z)

FIGURE 22. Example TACO2 packet.

The first four bits transmitted would be 0100, or decimal 4; the next four bits would be 0101, or decimal 5;
that is, the values, not the field identifiers, are transmitted.

71

MIL-STD-2045-44500

This is an internet datagram in version 4 of the internet protocol; the internet header consists of five 32 bi t
words, and the total length of the datagram is 70 octets, where 18 is the number of data bytes in the packet.
This datagram is a complete datagram (not a fragment). Following the IP header is the NETBLT header. It
indicates that this is an LDATA (type 6) packet, in version 4 of NETBLT, with 50 bytes of NETBLT header
plus data. It is the first packet (packet numbers start with 0) of the first buffer, and it is both the last packet
in this buffer and the last buffer in this transmission. The burst size is now seven packets, and the burs t
interval is seven seconds.

The actual hexadecimal values transmitted for this packet would be as follows, in octet transmission orde r
left-to-right, top-to-bottom:

45 00 00 46 00 04 00 00 FF 1E AF 9C 80 53 08 02
81 53 02 51 D6 A7 04 06 00 32 55 4B 00 01 00 00
00 00 00 01 00 00 00 01 00 00 00 00 71 B4 00 01
00 07 1B 58 54 68 65 20 4D 49 54 52 45 20 43 6F
72 70 2E OD 0A 1A

6.2 TACO2 NETBLT compared to RFC998 NETBLT. NETBLT as specified in Internet RFC 998 is
modified in this document for use as an element of TACO2. The modifications are as follows:

a. The Transfer Size field is removed from the OPEN and RESPONSE packets.

b. The Last Buffer Touched field is added to DATA/LDATA/NULL-ACK packets. This
simplifies the data timer mechanism.

C. The KEEPALIVE packet is eliminated (its function is retained, using other packet types),
and packet type numbers are changed.

d. Buffer numbers start with 1.

In addition, DATA packet checksumming is mandatory, and the transfer mode must be WRITE; that is, certain
NETBLT options are disallowed in TACOZ2. Finally, half-duplex and simplex modes of operation are defined.

72

MIL-STD-2045-44500
6.3 SLIP drivers.

The following C language functions send and receive SLIP packets. They depend on two functions,
send_char() and recv_char(), which send and receive a single character over the serial line.

/* SLIP special character codes. These are OCTAL representations.
*

#defi ne END 0300 /* indicates end of packet */
#define ESC 0333 /* indicates byte stuffing */
#defi ne ESC END 0334 [* ESC ESC_END means END data byte */ #define
ESC ESC 0335 /* ESC ESC ESC neans ESC data byte */

/ * SEND_PACKET: sends a packet of length "len", starting at
* | ocation "p."

*/

voi d send_packet (p, |en)
char *p;
int len; {

/* send an initial END character to flush out any data that nay
* have accunul ated in the receiver due to |ine noise
*/

send_char (END) ;

/* for each byte in the packet, send the appropriate character
* sequence

*/
while(len--) {
switch(*p) {
/* if it's the sane code as an END character, we send
* a special two character code so as not to nake the
* receiver think we sent an END
*
/
case END:
send_char (ESCO) ;
send_char (ESC END) ;
br eak;

/* if it's the sane code as an ESC character,
* we send a special two character code so as not
*/to nmake the receiver think we sent an ESC
*
case ESC
send_char (ESC) ;
send_char (ESC_ESC) ;
br eak;

/* otherwi se, we just send the character
*/

def aul t:
send_char (*p);

73

MIL-STD-2045-44500

f++;
/* tell the receiver that we're done sending the packet
*

fend_char(ENm;

/* RECV_PACKET: receives a packet into the buffer |located at "p.
* If nmore than len bytes are received, the packet will

* be truncat ed.

*/ Returns the nunber of bytes stored in the buffer.
int recv_packet(p, |en)

char *p

int len; {

char c;

int received = O;

/* sit in a loop reading bytes until we put together
* a whol e packet.
* Make sure not to copy theminto the packet if we
*/run out of room
*
while(1l) {

/7 get a character to process

*

¢ = recv_char();
/*/handle byte stuffing if necessary
switch(c) {

/* if it's an END character then we're done with
* the packet
*/
case END

/* a mnor optimzation: if there is no

* data in the packet, ignore it. This is
meant to avoid bothering IP with al
the enpty packets generated by the
duplicate END characters which are in
turn sent to try to detect |ine noise.

* % Ok X

*/
i f(received) .
return received;

el se
br eak;

/* if it's the sane code as an ESC character, wait
* and get another character and then figure out
*/mhat to store in the packet based on that.

*
case ESC

74

MIL-STD-2045-44500

¢ = recv_char();

/* if "c" is not one of these two, then we
* have a protocol violation. The best bet
* seens to be to | eave the byte al one and
* just stuff it into the packet

*

/

switch(c) {

case ESC END:
c = END;
br eak;

case ESC ESC
¢ = ESC
br eak;

}

/* here we fall into the default handl er and | et
* it store the character for us
*/
def aul t:
if(received < |en)
p[recei ved++] = c;

}
6.4 Notes on FEC.

6.4.1 General notes on FEC. Numerous FEC codes exist, all with different properties, with the result
that the proper matching of codes to channels is an important design aspect of any system that include s
FEC. FEC may be implemented in hardware, firmware, or software, or by a combination of thes e
methods. With respect to NITFS transmissions, FEC functions shall be realized by one of the following
means: as a separate hardware device, called an FEC Applique; as hardware or firmware embedded in a
system; or as an integral part of a modem (or in some cases, to a modem internal to a radio); or as
host-resident software. The following sections treat each of these four possibilities separately. In eac h
case, a survey of implementation relevant to NITFS is presented.

6.4.2 Discussion of FEC appliques. An FEC Applique is an "add-on™ FEC device; a separatel y
packaged piece of equipment whose primary function is to apply FEC encoding and decoding to a dat a
stream. FEC Appliques represent perhaps the simplest method of adding FEC to an existing SIDS system ;
usually only correct cabling is required, plus adjustments as needed to account for an y added delays in the
FEC unit.

6.4.3 Discussion of FEC-I and FEC-II. At the low-to-moderate bit rates associated with tactica l
communications, it is practical to implement FEC encoding and decoding in host software. The advantag e
of software coding will, in general, not be as great as that provided by dedicated hardware, but th e
portability of standardized software FEC and its relatively low cost should lead to increase d
interoperability. The FEC-1 and FEC-II codes described in 5.4.2.1 and appendix C

75

MIL-STD-2045-44500
are designed to be implementable entirely in software on a typical workstation or portable computer.
6.4.4 |Interpretation of BERT results. The BERT test described in 5.4.2.3 measures a count o f

successfully received frames from a given number of attempts. For an HDL C channel with random error
statistics, a count value of N provides an estimate of the random bit-error ratio as follows:

Standard BERT test:
BER = 1 - (N/1000) ¥
Short BERT test:
BER = 1 - (N/200)Y*3

For a SLIP channel, no exact general formula ties BERT test results to Bit Error Ratio (BER) estimates.
However, the above formulae still may be used to provide approximate guidance.

6.4.5 Performance considerations. To state the performance of an FEC code, assumptions must be
made in two areas. First, the noise and errors associated with the channel must be characterized. Second ,
a metric for data integrity is needed.

An exhaustive survey of the possibilities for these two assumptions is beyond the scope of this document.
Therefore, we will evaluate several of the subject FEC codes described in the previous section using the
following very general assumptions.

Channel: We assume the channel exhibits random d igital errors at various levels from 10 bit error ratio
(BER) to a BER of several percent.

Performance metric: We use as a performance metric the relative data throughput for 152-byte datagrams ,
taking into account the following four factors:

a. HDLC framing, bit-stuffing, and CRC overhead,

b. FEC redundancy,

C. Packet loss due to errors uncorrectable by the FEC,

d. Packet loss due to unrecoverable HDLC framing errors.

For example, if there is no coding overhead, and also are no errors, the relative throughput by this measur e
is determined solely by the overhead of the HDLC framing, bit-stuffing, and CRC.

76

MIL-STD-2045-44500

Based on these assumptions, figure 23 compares the performance of the following five coding systems .
HDLC framing is assumed in each instance.

FEC-I FEC-I as described in 5.4.1.1 of this document
FEC-II FEC-II as described in appendix C of this document
HW-1/2 Rate 1/2 Reed-Solomon code, 6 bit symbols
HW-3/4 Rate 3/4 Reed-Solomon code, 6 bit symbols

\ Rate 1/2, constraint length 7, Viterbi Encoding

Z No FEC

The data on figure 23 for FEC-1, HW-1/2, HW-3/4, V, and Z have been determined analytically an d
confirmed by experiment. The data for FEC-II are the result of analysis only.

As illustrated by figure 23, the six-bit R eed-Solomon codes (HW-1/2 and HW-3/4), and the Viterbi code
(V), which have been implemented in hardware devices, outperform the software FEC specified in 5.4.2. 1
and appendix C. This stems from placement of the Software FEC "above™ the HDLC framing [a s
illustrated on figure 2, (c)], and the sensitivity of the HDLC framing mechanism to bit errors.

77

MIL-STD-2045-44500

O =03 g o3+

< © © D) “ —
H\ N _
| \ A T
o “— O
- @ N -
RN
<f - _
P S o
= —T% i
\ = \.
*— *
i
e — ¢—%
\IZ

10—4

10-3

10-2

BER

FIGURE 23. BER vs. relative throughput.

78

MIL-STD-2045-44500

6.4.6 Selection of FEC coding options.

6.4.6.1 General discussion. Figure 23 provides some guidance in the selection of FEC coding. For
random error channels, the BER may be measured by applying the BER test described in 5.4, or by other
methods. Assume that the options available are no coding, FEC-I, and FEC-II1. Based on this result and
the data of figure 23, the no coding option is best for BER better than 5 x 10, the FEC-I1 code preferred
for BER worse than 3 x 10, and the FEC-I code selected for BER between these two values.

Note that if the channel is bursty rather than random, conditions may exist in which the limited burs t
correction ability of FEC-I (33 bits) is exceeded, but the burst correction ability of FEC-11 (790 bits) allow s
successful operation.

If a form of FEC is available as part of the specific datalink external to the SIDS system, the selectio n
process becomes more complex. In many cases, the external system specific FEC will outperform th e
FEC-I and FEC-II codes and therefore is the first choice for routine operation of the s pecific SIDS system
on the datalink. However, bypassing the system specific FEC and invoking FEC-I or FEC-I1I will allow
interoperable communications between dissimilar SID systems on the same data link.

The following provides some general guidance as to the possible configurations of FEC-1 and FEC-1I FEC
on various circuits.

6.4.6.2 Descriptions of circuits.

6.4.6.2.1 16 kbps UHF SATCOM. The circuit consists of Ultra High Frequency (UHF) transceivers
communicating over satellite transponders, equipped with a KY-57 or Sunburst device operating at 1 6
kbps, using baseband modulation. This description also may be used for simil ar circuits including KY-57
encrypted line of sight (LOS) circuits using UHF or Very High Frequency (VHF) radios.

6.4.6.2.2 2.4 kbps UHF SATCOM. The circuits consist of UHF transceivers communicating ove r
satellite transponders, equipped with a KG-84 or Sunburst device, and with internal BPSK modem s
operating at 2.4 kbps; or similar circuits using UHF or VHF radios operating LOS.

6.4.6.2.3 16 kbps UHF SATCOM with FEC applique. The circuit consists of UHF transceivers
communicating over satellite transponders, equipped with a 16 kbps KY-57 or Sunburst device, and
equipped with an FEC applique; or similar circuits using UHF or VHF radios operating LOS.

6.4.6.2.4 2.4 kbps UHF SATCOM with FEC applique. The circuits consist of UHF transceivers
communicating over satellite transponders, equipped with a KG-84 or Sunburst device, and with internal
Binary Phase Shift Keying (BPSK) modems operating at 2.4 kbps, and equipped with an FEC applique;
or similar circuits using UHF or VHF radios operating LOS.

79

MIL-STD-2045-44500

6.4.6.2.5 HE circuits. The circuit consists of High Frequency (HF) transceivers equipped with internall
or external modems operating from 300 bps to 2400 bps.

6.4.6.2.6 HEF circuits with hardware FEC. The circuit consists of HF transceivers equipped with
internal or external modems operating from 300 bps to 2400 bps, w ith the addition of FEC either internal
to the modem or by an FEC applique.

6.4.6.2.7 TRI-TAC. 16 or 32 kbps Tri-Service Tactical Communications (TRI-TAC) connection ,
KY-68 encrypted.

6.4.6.2.8 Telephone circuit. Standard telephone circuit equipped with a modem that does not include d
retransmission-based error control such as a Bell 212/224, V.26, V.27, or V.32 modem.

6.4.6.2.9 Telephone circuit with error control. Standard telephone circuit equipped with a modem that
implements retransmission protocols such as MNP4/MNP5, V.42, or PEP.

6.4.6.2.10 DAMA. Viterbi-encoded U.S. Navy Demand Assignment Multiple Access (DAMA)
circuit.

6.4.6.3 Recommended modes. Table Il shows the recommended configuration of FEC-1 and FEC-II
as a function of the above circuit descriptions. If the communication equipment includes FEC, use o f
FEC-1 or FEC-I1I is not recommended.

TABLE Il. Recommended modes.

Circuit Type Recommended Modes
6.4.6.2.1 FEC-1I
6.4.6.2.2 Unencoded, FEC-I, FEC-II
6.4.6.2.3 Unencoded, FEC-I, FEC-II
6.4.6.2.4 Unencoded, FEC-I, FEC-II
6.4.6.2.5 FEC-1I
6.4.6.2.6 FEC-1, FEC-II
6.4.6.2.7 FEC-I
6.4.6.2.8 FEC-1, FEC-II
6.4.6.2.9 Unencoded
6.4.6.2.10 Unencoded

80

MIL-STD-2045-44500

6.5 Effectivity summary. Some of the capabilities specified in this document are not required as of
the issue date of the document. All such capabilities are marked with effectivity numbers, for example,
(Effectivity 1). Each effectivity number will be replaced by a specific date in subsequent releases of this
document.

6.5.1 Effectivity 1 - FEC | and Bit Error Ratio Test (BERT) .

a. 4.1.6 EEC. Forward Error Correction (FEC) is a mandatory component of the TACO?2
protocol stack whose use in a particular circuit is user selectable
(Effectivity 1). ...

6.5.2 Effectivity 2 - FEC II.

a. APPENDIX C EEC-II CODE. (The contents of this section are (Effectivity 2) pending
further implementation and testing of the proposed FEC code.)

b. 5.4.2.2.3 EEC-ll. FEC-II is applied to a SLIP and/or HDLC encapsulated datalink a s
described in appendix C (Effectivity 2).

6.5.3 Effectivity 3 - Header abbreviation and client-controlled flow .

a. 4.1.5 Header Abbreviation sublayer. TACO2 provides a mechanism for header
abbreviation across point-to-point links. Use of the header abbreviation sublayer is
optional: its inclusion in any compliant implementation of TACO2 shall be mandator y

(Effectivity 3).
b. 5.2.3.5 Client-controlled flow. (Effectivity 3)
C. 5.4.1 Header Abbreviation sublayer. TACO2 provides a mechanism for header

abbreviation across point-to-point links. Use of the header abbreviation sublayer is
optional: its inclusion in any compliant implementation of TACO2 shall be mandator y
(Effectivity 3).

6.5.4 Effectivity 4 - Pull vs. push.

a. 5.1 NITES reliable transfer server for TACO2 (TACO2 NRTS). The TACO2 NRTS
described here assumes an active sender and a passive receiver (*'push™ operation); as of
the effectivity date (Effectivity 4) the TACO2 NRTS shall also support an active receiver
and passive sender ("pull™ operation).

b. 5.2.9.2.5 Direction. (Effectivity 4) Until the effectivity date, operation of TACO2 is
defined only for "M" set to 1; that is, TACO2 allows only active sending and passiv e
receiving. Following that date, operation with "M" set to O is also permissible.

81

MIL-STD-2045-44500

6.5.5 Effectivity 5 - Multicast.

a.

6.5.6 Effectivity 6 - Medium Access Control layer .

a.

5.3.1.1 |P_augmentations.

TACO2 supports a limited form of multicasting by

allowing simplex receivers to "listen in" on simplex, half-duplex, or full-duple x
transmissions; (Effectivity 5: later versions of TACO2 may support acknowledge d

multicast).

5.4 Data link layer. The Data Link layer in TACO?2 is divided into three sublayers :

Header Abbreviation, FEC, and Framing.

(Effectivity 6: a Medium Access Contro |

Layer, just below the Framing Sublayer, is under consideration.)

6.5.7 Effectivity 8 - Defense Information Systems Network (DISN) .

e.

DISA/JIEO Circular 9008

DISA/JIEO Specification 9137
DISA/JIEO Specification 9138
DISA/JIEO Specification 9139

DISA/JIEO Specification 9140

6.7 Subject term (key word) listing .

Error detection

Forward error correction (FEC)
Frames

HDLC

ICMP

IP

Message Transfer Facility
NETBLT

Packets

Secondary Imagery Dissemination Systems
SIDS

SLIP

82

MIL-STD-2045-44500
APPENDIX A
FINITE FIELD ARITHMETIC FOR FEC-I1 AND FEC-II CODES

10. Scope. This appendix is not a mandatory part of the standard. The information contained in it is
intended for guidance only.

20. Applicable documents. This section is not applicable to this appendix.

30. FEinite field arithmetic for FEC-1 and FEC-II codes. The field arithmetic used in these codes is
defined by the field generator polynomial x®+ x ® + x® + x> + 1. This appendix describes what this
means in terms of performing field operations such as addition and multiplication a s part of a computation
implementing the FEC codes.

There are 256 field elements, each represented by an eight-bit byte. The following elements (given i n
hexadecimal) have special significance:

0x00 --- 0, the additive identity
0x01 --- 1, the multiplicative identity
0x02 --- «, the field generator

Arithmetic computation for this field can be defined by the following six postulates:
a. For any elements x and y, x—+Y is the bitwise exclusive-OR of x and y.

Therefore, x + 0 =0+ X = X; X + x = 0; Xx + y =y + X; and for elements X, y and
Z, (x+y) +z=x+ (y+2).

b. For any element x, x X 1 = x.

C. Commutative law for multiplication: for any elements x and y, Xy = yx.

d. Associative law for multiplication: for any elements x, y and z, (xy)z = x(yz).

e. Distributive law: for any elements c, X, and y, c(x+y) = cx + cy.

f. The following multiplication table, combined with the distributive law, defines

multiplication for the entire field (all values are hexadecimal):

83

MIL-STD-2045-44500

0x01 0x02 |0x04 |0x08 |0Ox10 |0x20 |0Ox40 |0x80
0x01 | 0x01 0x02 |0x04 |[0Ox08 |0x10 |0x20 |0Ox40 [0Ox80
0x02 | 0x02 0x04 |0x08 |[0x10 |0x20 |0x40 |0x80 |0x2D
0x04 | 0x04 0x08 |0x10 |[0x20 |O0x40 |0x80 |O0Ox2D [Ox5A
0x08 | Ox08 0x10 |O0x20 |0x40 |[0Ox80 |0x2D |Ox5A |0xB4
0x10 |0x10 0x20 | 0x40 |[0x80 |O0x2D | Ox5A |0xB4 [0x45
0x20 | 0x20 0x40 | 0x80 |0x2D | Ox5A | 0xB4 | 0x45 | Ox8A
0x40 | 0x40 0x80 | 0x2D | Ox5A | 0xB4 | 0x45 | Ox8A | 0x39
0x80 | 0x80 0x2D | Ox5A | 0xB4 | Ox45 | Ox8A | 0x39 | 0x72

Based on the above, exponentiation of a field element x by a non-negative integer n is defined so that x ° is 1,
and x" is the result of multiplying x together n times. The field element « is said to generate the field because
o’ through «®** are distinct, and are the 255 non-zero field elements.

The inverse of a field element o' is o) Tq 2% = 1 for any integer i between 0 and 254.
Exponentiation by negative integer exponents is defined such that x * is the inverse of x.

Example: multiply 0x80 by 0x06, using the multiplication table and the distributive law:

0x80 x 0x06

= 0x80(0x04 + 0x02)

= 0x80 x 0x04 + 0x80 x 0x02
= Ox5A + 0x2D

= 0x77.

Example: compute the value of o® + o®
o® = 0x08
a® = 0xC1

o + 0% = 0xC9

The 256 field elements are provided in Table A-1.

84

MIL-STD-2045-44500

Table A-l. Field Elements.

0 01 52 95 104 | 4E 156 | F5 208 | DE
1 02 53 07 105 | 9C 157 | C7 209 | 91
2 04 54 OE 106 | 15 158 | A3 210 | OF
3 08 55 1C 107 | 2A 159 [6B 211 | 1E
4 10 56 38 108 | 54 160 | D6 212 | 3C
5 20 57 70 109 | A8 161 | 81 213 | 78
6 40 58 EO 110 | 7D 162 | 2F 214 | FO
7 80 59 ED 111 | FA 163 | 5E 215 | CD
8 2D 60 F7 112 | D9 164 | BC 216 | B7
9 S5A 61 C3 113 | 9F 165 | 55 217 | 43
10 | B4 62 AB 114 | 13 166 [AA 218 | 86
11 | 45 63 7B 115 | 26 167 | 79 219 | 21
12 | 8A 64 F6 116 | 4C 168 | F2 220 | 42
13 | 39 65 Cl 117 | 98 169 | C9 221 | 84
14 | 72 66 AF 118 | 1D 170 | BF 222 | 25
15 | E4 67 73 119 | 3A 171 | 53 223 | 4A
16 | E5 68 E6 120 | 74 172 | A6 224 | 94
17 | E7 69 El 121 | E8 173 | 61 225 | 05
18 | E3 70 EF 122 | FD 174 | C2 226 | OA

85

MIL-STD-2045-44500

[al [a i al [a [al
19 EB 71 F3 123 | D7 175 | A9 227 14
20 FB 72 CB 124 83 176 | 7F 228 28
21 | DB 73 BB 125 2B 177 | FE 229 50
22 9B 74 5B 126 56 178 | D1 230 | A0
23 1B 75 B6 127 | AC 179 | 8F 231 | 6D
24 36 76 41 128 75 180 | 33 232 | DA
25 6C 77 82 129 | EA 181 | 66 233 99
26 D8 78 29 130 F9 182 | CC 234 1F
27 | 9D 79 52 131 | DF 183 | B5 235 | 3E
28 17 80 Ad 132 93 184 | 47 236 | 7C
29 2E 81 65 133 0B 185 | 8E 237 F8
30 5C 82 CA 134 16 186 | 31 238 | DD
31 B8 83 B9 135 | 2C 187 | 62 239 97
32 | 5D 84 5F 136 58 188 | C4 240 03
33 | BA 85 BE 137 BO 189 | A5 241 06
34 59 86 51 138 | 4D 190 | 67 242 | 0C
35 B2 87 A2 139 | 9A 191 | CE 243 18
36 49 88 69 140 19 192 | Bl 244 30
37 92 89 D2 141 32 193 | 4F 245 60
38 09 90 89 142 64 194 | 9E 246 | CO
39 12 91 3F 143 | C8 195 | 11 247 | AD

86/88

MIL-STD-2045-44500

TABLE A-I. Field Elements - Continued.

[al [al i al [al [a
40 24 92 7E 144 | BD 196 | 22 248 77
41 48 93 FC 145 57 197 | 44 249 EE
42 90 94 D5 146 | AE 198 | 88 250 F1
43 0D 95 87 147 71 199 | 3D 251 | CF
44 1A 96 23 148 E2 200 | 7A 252 B3
45 34 97 46 149 E9 201 | F4 253 4B
46 68 98 8C 150 FF 202 | C5 254 96
47 DO 99 35 151 D3 203 | A7 255 00
48 | 8D 100 | 6A 152 8B 204 | 63
49 37 101 D4 153 3B 205 | C6
50 6E 102 85 154 76 206 | Al
51 | DC 103 27 155 EC 207 | 6F

87/88

MIL-STD-2045-44500

APPENDIX B
EXAMPLE SOFTWARE FOR FEC-I

10. Scope. This appendix is not a mandatory part of the standard. The information contained in it is
intended for guidance only.

20. Applicable documents. This section is not applicable to this appendix.

30. Example software for FEC-I.

Contents of the file "ReadMe" are as follows:
a. This directory contains three files:
- this file ("ReadMe")
- "x3b11", which has log/alog tables for the finite field

- sample.c, which contains sample encode() and decode() functions for the FEC-I
code

When compiled and executed, sample.c performs a sample decoding and should produce the following
output:

remainder: 33
remainder: 127
remainder: 74
remainder: 208
remainder: 239
remainder: 95
remainder: 43
remainder: 181
remainder: 41
remainder: 150
degW 5

d: 0

dtmp at end of chien(): 0
length: 152

degree (should be 5): 5
uncorrected errors (should be 0): 0

89

MIL-STD-2045-44500

Contents of the file "x3b11" are as follows:

256

00
04
05
fa
06
e5
f5
39
07
2a
e6
89
f6
2f

3a
dé

01
eb
5d
8d
f6
a4
23
d9
75
bd
dé
7f

bl
de
94
03

00
c3
db

4c
56
ad
93
al
dl
ce
cO
41
b2
45

02
e7
ba
37
cl
65
46
of

ea
57
81
fe
4f

91
05
06

01
27
c4
8d
dc
Af

bb
Oe
4d
25
57
23
ae
59
94
a8

04
e3
59
6e

ca
8c
13
fo
ae
2f

dl
Qe
of

Oa
Oc

fo
72
60
b4
do
ab
cc
43
7c
84
9e
fc
3d
97
12
47

08
eb
b2
dc
73
b9
35
26
df

71
5e
8f

11
le
14
18

02
e3
28
2d
c5
6¢C
8e
78
dd
el
50
Oa
bc
65
of

c9

10
fb
49
95
eb
5f

6a
4c
93
e2

33
22
3c
28
30

el
6a
de
63
Ob
ab
51
80
66
34

b7
ca
5e
10
9c

20
db
92
07
el
be
d4
98
Ob
e9
55
66
44
78
50
60

f1l
86
73
18
61
Te
b5
9a
da

ac
4b
cd
a0
44
40

40
9b
09
Oe

51
85
1d
16
ff

aa
cc
88
fo
a0
cO

35
1c
67
31
b8
91
be
f8
5f

cb
d8
ad
7b
11
3c

80
1b
12
1c
f3
a2
27
3a
2C
d3
79
b5
3d
cd
6d
ad

90

03
f3
e4d
38
29
88
2e
d5
c6
75
6d
1f

8f

la
79

2d
36
24
38

69
4e
74
58
8b
f2
47
7a
b7
da
77

26
8c
4e
0d
24
22
58
ar’
5a
e9
af

53
a9
70
95
82

5a
6¢C
48
70

d2
9c
e8
b0
3b
c9
8e
fa
43
99
ee

e2
2C
6b
77
df
09
64
c8
Oc
8b
a6
21
52
e8
81
6f

b4
ds
90
e0
5b
89
15
fd
4d
76

31
c5
86
1f
f1

85
17
7d
99
fd
4a
of

3f

98
16
3e
49
48
15
13
14

45
ad
od
ed
b6
3f

2a
a7
9a
ec
53
62
a7
21
3e
cf

f2
37
87
d4
74
le
19
ec
62
69
7f
a4
b6
33
9b
5d

8a
17
la
f7
41
Te
54
83
19
f5
a6
c4
63
42
7cC
b3

2b
76
08
c7
8a
20
e’
6e
30
1b
f7
90
d7
ee
3b
7a

39
2e
34
c3
82
fc
a8
2b
32
c7
61
a5
c6
84
f8
4b

36
d3
1d

68
a3
32
5c
b9
c2
92
55
bf
do
fo
bl

72
5c
68
ab
29
d5
7d
56
64
a3
c2
67
al
25
dd
96

d2
ea
a2
5b
cl
54
cf

b0
b3
71
42
aa
fb
83
46
96

e4
b8
do
7b
52
87
fa
ac
c8
6b
a9
ce
6f

4a
97
00

MIL-STD-2045-44500

Contents of the file "sample.c" are as follows:
* sanpl e version of FEC | encode and decode routines --

functional for unencoded packet |engths up to 152 bytes */
#i ncl ude <stdio. h>
#define K 152
#def i ne GFCALCFI LE "x3b11"
/* array of constants used by Wl ch-Berl ekanp iteration */
unsi gned char x[10][12] = {
0x01, O0x01, 0x01, 0Ox01, Ox01, 0x01, Ox01, 0x01, 0Ox01, 0Ox01
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x2d, O0xb5a,

0x01, O0x04, 0x10, 0x40, 0x2d, Oxb4, 0x8a, 0x72, 0Oxe5, O0xe3,
0x01, 0x08, 0x40, Ox5a, 0x8a, Ox?g, Oxgg, Oxdb, 0x38, 0x98,

/* packet structure -- naxinun1|en8ths:
netblt packet data field: 100 bytes
i p datagram 152 bhytes
encoded packet: 162 bytes (1 RS codeword)
structures sized for 700 byte packets - later */
struct packet {
short | ength;
?n3|gned char data[802];
unsi gned short | o [256% al og[256
unsi gned char W 6], n[, Vv][6];
unsi gned char loc[6], val[6

short Nunkrrs;

short d,deﬂvv

unsi gned char a, b, s;
/* main() first initializes log and alog tables */
mai n()

st{uct_packet pack;

int x,i;
scan_gfcalc(); /* function to read in log, alog tables */
/* test code creating a packet with five errors */
Pack.!ength = 162;

or (i=0;i<162;i ++) {,

pack.datafi] = (i>4) ?2 0 : I+1

91

MIL-STD-2045-44500

}
/* decode the packet */

decode(&pack) ;
/* now print sone nore stuff to verify successful decode */
grbntf("length' %\ n", pack. | engt h);

for (i=0;i<152;i++) if gpack data[|]) d++;
printf(" degree (shoul d): 8VV

printf("unCorrected errors (should be %\ n", d);

scan_gf cal c()

LI int i

it ;L?&e”(ﬁéﬁf%%

% %éd f|Ie2n oF eXIt(l) }
5v0|d fscanf (fp, " %" &1) "/* du

scan
*printf("oe\n",j); */ my
for (i=0;i<256;i++)
(voi d) fscanf P
[* printf(/ n" %
) Iog[|E (unS|gned [S ort) i

for (i=0;i<256)]]

) §v0|d) fscanf(fp "X, &) alog[l] = (unsigned short) j; }
§v0|d cl ose(fp);

unsi gned short

i nvert (x)

unsi gned short x;

ieturn(alog[(255 - log[x]) % 255]);
unsi gned_short

mul t(x, y

unsi gned short x,y;

ieturn(x &'y ? alog[(log[x] + log[y]) %255] : 0);

/* function to encode a single packet */

encode
struct(Bgcket *p;

Int 1,i,j;

i f E'(I L —>Ienti02 return;

if (1>152) return; | ater -- encode | onger packets */
/* initialize check bytes to zero */

for (j=0;j<10;j++) p->data[l+j] = O;

92

MIL-STD-2045-44500

/* encode by conputinﬂ each check byte., i and L have the sane
definition as in the equation defining the check bytes in 5.1 */
for (%=0;j§10;j++? .
or (i=10;i<l+10;i ++) L .
p->data[l +] ~= mult(p->data[l+9-i],invert(alog[i]”alog[j]));
/* increase packet length by 10 */

f—>length += 10;

/* function to decode a sing ? packet: first re-encode, then
c

|
t

cal wb(), chien(), correct() */

decode

ftruct(ggcket *p;

nt 1,i,j;

i f E!(I = (p—>Iengthl—10%) return

if (1>152) return; /* later -- decode | onger packets */

/* re-encode each check byte -- this is the sanme as encodi ng, but
wi t hout zeroing the check bytes first. i and j have the Sane
definition as in the equation defining encoding checks in 5.1 */

for (%=0;j§10;j++? .
or (i=10;i<l+10;i ++) L .
p->data[l +] ~= mult(p->data[l+9-i],invert(alog[i]”alog[j]));
/* done re-encoding, proceed w th decode */

V\k) .
prgﬁzf("degVVWG\n",de Vg;
I f fchlen(p)) correct?p;
f_> ength -= 10;

/* wb() perforns the Wl ch-Berl ekanp iteration */
wh
?tgﬁlt packet *p;
/* initialize welch-berl ekanp */
regi ster short j,k,1im
g:o;(_ 0:j<6;j++) wWjl=nij]l=n[j]=v[j]=0
or (J=0:]<6;]++ JI=mjl=n{)=vl)]=0;
w[0] =nf 0] =1;
/* wel ch-berl ekanp iteration */
for (j=0;j<10;j++) {

/* set for-loop limt for polynom al operations */
lim= ((j>4) ?5: j+1);

93

MIL-STD-2045-44500

/* get renainder from packet */

>dat a[(p->l en 10) +il;

prlnPf(renai nder : 9d\n
/* evaluate a and b */

for (s OAE<IWK++ K onfkg) A ml (s, mil] TR k)
o2 LT) = e L 0
/* test d, a, b and do a 4-way branch */

if ((d<=0) && !'a) {
[* u?date

T 6 Lt
ik =i

contlnue

>

if ((d>0) && !'b) {
[* u?date N W /

B L RS
SHEHIBREI

>

wol =
d++;

contlnue

if ((d<=0) && a) {

/[* update M V */
for k=0i(<<zl|rrlt<+;) k) A mult(b. nl Kk
gk =%tfavk3 A ItEb:V\{ ”
14Z>ru?g§}enN >\6\'/i/ i
; u{: m b1 4

94

d++;
cont i nue;

if ((d>0) &8 b) {

[* update N, W/
for (k=0; k<=li m k++)
n[k] = nu tEb,n
k] = mult(b,
}
[* updat e V */
for k=|i1$t>0'<—-1
= n{<-1
¥ k] = v[k-1
0] =mult(x[j][1],
ool = mitGH
d__.
fontlnue

}

/* done with WB iteration

degW6;
\}mlle(!m{(degw-)—ll);

/* vaIue(? is called by chien wi
anP a nessa e efror |oc
N(alog[1]) / W(alog[l]) */

unsi gned char

val ue(l)

?hort I

unsi gned char numden,t, a;

{2 (a = alogllT)"

num = n[O],

num A= nul t(n[1],t)

t = mlt(t,a);

num A= mul t (nf2],1t);

t = mlt(t,a);

num A= mul t (nf3],1t);

t = nult(t,a)

num A= mul t (nf 4], t);

den = v%l];

t = mlt(a a);

den A= mult(w3],t);

t = mult(t,t);

den "= nult 5],t);

iet urn(mult (numinvert(den)));

/* chien searches for roots of

MIL-STD-2045-44500

nust set degWto degree of w] */

th an argunment which is the
t ion. It returns the error val ue

w, updating the arrays

95

MIL-STD-2045-44500

I OC[L and val [l chien returns i f decodable, in
case | oc 4 and val #] have NmE rrs |ocation/val ue
pairs; chien returns 0 it undecodable */

chi en
str ucg p)packet *p;

Em&gned short sum w0, wil, w2, W3, w4, wb;
shor
short dt rrp, nunerrs;

printf("d: %\n\n",d);
if (d>0) return(0); /* wb exited undecodabl e */
dtmp = degW
/* first search for check roots of w, startln% by
w4, ws for [ocation alog[|
root is found we only decrenent dtnp *

#define A254 1 0x96

#define A254"2 0x4b

#define A254°3 0xb3

#define A254"4 Oxcf

#define A254°5 Oxf1l

wo = 0];

V\ﬂ.=%|1 1], A254_1);

w2 = mult 2], A25472);

w3 = nmul t 3], A25473);

wi = mul t 4], A25474) ;

ws = nul t 5], A25475) ;

for (1=0;1<10;1++) {
sum = Wo;
sum”= (wl = nmult(wl, al og[1 ;
sum = (w2 = nmul t (w2, al og[2 ;
sum = (w3 = nul t (w3, al og[3 ;
sum"— w4 = rmul t (w4, al og[4]));

m~= (ws = nult (w5, al 0g[5 ;

|f ('sum dtnp--;

/[* printf("degWIess nunber of check errors: %\n\n",dtnp); */
/* wO...wb are now set for location alog[9], and we are

ready to search for nessage roots starting at the end

of the nmessage */

[im= (p >Iength)

NunErrs =

for (1=10;1<liml++) {
sum = w0;
sum”= (w1l = mult(wl, al og[1 ;
sum”= (W2 = mult (w2, al og[2 ;
sum = (w3 = mul t (w3, al og[3 ;
sum”= (w4 = mult (w4, al og[4]));

96

MIL-STD-2045-44500

sum "= (ws = mult(wh, alog[5]));
if ('sum {

dt np- -;

loc[NunErrs] = 1;

val [NunErrs++] = val ue(l);

}
}

printf("dtnp at end of chien(): %\ n\n",dtnp);
return(dtnmp == 0);

/* correct() fixes the errors in the nessage section of the
packet */

correct(p)
struct packet *p;
{
int i;
for (i=0;i<NunkErrs;i++)
p->data[(p->length) - loc[i] - 1] "= val[i];

97/98

MIL-STD-2045-44500

APPENDIX C
FEC-1I CODE

(The contents of this section are (Effectivity 2) pending further implementation and testing of th e
proposed FEC code.)

10. Scope. This appendix is not a mandatory part of the standard. The information it contains i s
intended for guidance only.

20. Applicable documents. This section is not applicable to this appendix.

30. EEC-Il Code. FEC-II encoding applies both Reed-Solomon and BCH coding for operation in high
error environments. Further, FEC-II encodes a single datagram or section of a datagram into a group of
"fragments,” or small packets of 12 bytes each. The BCH coding protects each fragment, and using the
Reed-Solomon coding, up to eight fragme nts may be lost in transmission while still allowing the receiver
to recover the datagrams.

(The term fragment used in this section, is unrelated to the fragments defined by the Internet Protocol.)

The individual fragments shall be encapsulated by the data link layer, generally either as a SLIP frame as
specified in 5.4.3.2, or as an HDLC frame as specified in 5.4.3.1. If a FEC-II fragment is encapsulated
as an HDLC frame, the 2-byte HDLC frame opening sequence, as well as the 2-byte CRC, shall not be
included in the frame.

Datagrams up to length 382 bytes may be encoded by the FEC-II coding process. The first step shall be
to represent the datagram by either one or two "sections.” If the datagram is of length L, where L is 191
bytes or less, it shall be represented by a single "section™ containing L + one bytes as follows: an initial
byte containing the byte count L, followed by the L bytes contained in the datagram. If the datagram is
of length L, where L is 192 through 382 bytes inclusive, it shall be represented by two secti ons. The first
section shall consist of an initial byte with value 255 (decimal), followed by the first 191 bytes contained
in the datagram. The second section shall consist of an initial byte with value (L - 191), followed by the
remaining bytes of the datagram.

First we will specify the format of a single fragment, and then describe how the input bytes used to form
the fragments are derived from the unencoded section.

Each 12-byte fragment is formed from an 8-byte sub-block, which is made up of the "input bytes" o n
figure C-1.

99

MIL-STD-2045-44500

Modified
Count Sequence
Code Number IBO IBO

SN St e

byte 0 byte 1 byte 2

1IB2 IB3 IB4

byte 3 byte 4 byte 5

1B5 IB6 IB7

7 07 07 0
byte 6 byte 7 byte 8

BCH Redundancy

/’—//%

23 0

7 07 07 0
byte 9 byte 10 byte 11

IB = "Input Byte"

FIGURE C-1. EEC-II fragment format.

100

MIL-STD-2045-44500

The origin of the 3-bit Modified Count Code and 5-bit sequence number will be described shortly.
The 24-bit BCH redundancy field is formed using the following polynomial:

X24+X23+X21+X20+X19+Xl7+X16+Xl5+X13+X8+X7+X5+X4+X2+1

To calculate the BCH redundancy, feed the following bits, in the order shown, into a feedback shif t
register, initialized with the hexadecimal value 0x0000FF, and wired according to the above polynomial:

Modified Count Code bits 2 through 0
Sequence Number bits 4 through 0
IBO bits 7 through 0

IB1 bits 7 through O

IB7 bits 7 through 0

The above describes how to form a fragment given the input bytes, modified count code, and sequenc e
number. We now describe how the input bytes, modified count codes, and sequence numbers are derived .

First, the unencoded section is split into a sequence of 8-byte sub-blocks. Eight more 8-byte sub-blocks

containing Reed-Solomon redundancy are then created. Each sub-block contains bytes numbered 0 through
7.

Eight choices exist for the number of message sub-blo cks used to represent a datagram, as determined by
a 3-bit count code in table C-I.

101

MIL-STD-2045-44500

TABLE C-I. Count codes for different length sections .

Number of Message Sequence Numbers of Nominal Section
Count Code Sub-blocks Message Sub-blocks Length (bytes)
0 4 0-3 32
1 6 0-5 48
2 8 0-7 64
3 10 0-9 80
4 13 0-12 104
5 16 0-15 128
6 19 0-18 152
7 24 0-23 192

The eight Reed-Solomon Redundancy Sub-blocks always have sequence numbers 24 through 31.

The 3-bit Modified Count Code inserted in the fragment is the bitwise-exclusive-OR formed from the abov e
Count Code, and a residue computed from the remaining data in the fragment. This residue is defined as
follows (using binary arithmetic):

7
Residue = { (sequence number mod 9) + Z (Input byte 1) mod 9 } mod 8

i-o

Each byte in a Reed-Solomon Redundancy Sub-block with sequence number j is computed from the
correspondingly-numbered bytes M, in each of the message sub-blocks as follows:

M. .
Cry = Y —— , 24<j<3l
_ al®_gT0
1
where i ranges over the message sub-block sequence num bers, and the correspondence between sequence
numbers and locations within the Reed-Solomon codeword is:

102

MIL-STD-2045-44500

X T[X]
24 0
25 1
26 2
27 3
28 4
29 5
30 6
31 7
0 10
1 11
2 12
23 33

(The expression above uses Galois Field arithmetic as described in 5.4.2.1 for the FEC-I code.)

Presently, FEC-II encoding is not specified for datagrams whose unencoded length is greater than 38 2
bytes. Should a FEC-II encoder be presented with such a datagram, the correct action is to transmit i t
without any encoding.

Because the FEC-I1 encoding process has the effect of adding zero-fill to a datagram to achieve a standard
length, a receiving system must determine the actual length of the original datagram. It does this by
examining the length field in the Internet Protocol (IP) header, or, in the case where header abbreviation
is used, the length field in the abbreviated header.

103

MIL-STD-2045-44500

CONCLUDING MATERIAL

Custodians: Preparing activity:

Army - SC Misc - DC

Navy - SC

Air Force - 90

Misc - DC Agent:

Not applicable

Review activities: (Project DCPS-008)

OASD - IR

Army - AC, PT

Navy - CH, EC, MC, ND, NO, OM, TD
Air Force - 02, 17, 90

DLA - DH

Misc - NS, MP, DI, DC, 29

User activities:
Army - CR, PT
Navy - MC, EC, TD
Air Force - 13
Misc - MP, DI, 29

Civil agency coordinating activities:
USDA - AFS, APS

COM - NIST

DOE

EPA

GPO

HHS - NIH

DOl - BLM, GES, MIN
DOT - CGCT

104

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

1. The preparing activity must complete blocks 1,2, 3, and 8. In block 1, both the document number and revision

letter should be given.

2. The submitter of this form must complete blocks 4, 5, 6, and 7.
3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of
requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to
waive any portion of the referenced document(s) or to amend contractual requirements.

| RECOMMEND A CHANGE:

1. DOCUMENT NUMBER
MIL-STD-2045-44500

2. DOCUMENT DATE (YYMMDD)
930618

8. DOCUMENTTITLE TACTICAL COMMUNICATIONS PROTOCOL 2 (TACO?) for the NITFS

4. NATURE OF CHANGE (ldentify paragraph number and include proposed rewrite, if possible. Attach extra sheets as needed.)

5. REASON FOR RECOMMENDATION

o0

. SUBMITTER

a. NAME (Last, First, Middle Initial)

b. ORGANIZATION

c. ADDRESS (Include Zip Code)

d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (YYMMDD)

(1) Commercial
(2) AUTOVON
(If applicable)

o

PREPARINGACTMTY DEFENSE INFORMATION SYSTEMS AGENCY

o

NAME - DISA/JIEO/CFS/TBBD

b. TELEPHONE (Include Area Code)
(1) Commercial (2) AUTOVON

o

. ADDRESS (Include Zip Code)

Fort Monmouth, NJ 07703-5613

IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS,
CONTACT:

Defense Quality and Standardization Office
5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466
Telephone (703) 756-2340 AUTOVON 289-2340

DD Form 1426, OCT 89

Previous editions are obsolete.

198-290

